Through reviewing the flow theory’s birth and development history in underground porous media and contrasting the mechanics of underground fluids and mechanics of viscous fluids, this paper points out the main facto...Through reviewing the flow theory’s birth and development history in underground porous media and contrasting the mechanics of underground fluids and mechanics of viscous fluids, this paper points out the main factors, which affect the development of the theory on oil and gas porous flow. The development law and development route of the mechanics of fluids in porous media are also summarized in this paper.展开更多
Tight oil reservoirs are complex geological materials composed of solid matrix,pore structure,and mixed multiple phases of fluids,particularly for oil reservoirs suffering from high content of in situ pressurized wate...Tight oil reservoirs are complex geological materials composed of solid matrix,pore structure,and mixed multiple phases of fluids,particularly for oil reservoirs suffering from high content of in situ pressurized water found in China.In this regard,a coupled model considering two-phase flow of oil and water,as well as deformation and damage evolution of porous media,is proposed and validated using associated results,including the oil depletion process,analytical solution of stress shadow effect,and physical experiments on multi-fracture interactions and fracture propagation in unsaturated seepage fields.Then,the proposed model is used to study the behavior of multi-fracture interactions in an unsaturated reservoir in presence of water and oil.The results show that conspicuous interactions exist among multiple induced fractures.Interaction behavior varies from extracted geological profiles of the reservoir due to in situ stress anisotropy.The differential pressures of water and that of oil in different regions of reservoir affect interactions and trajectories of multi-fractures to a considerable degree.The absolute value of reservoir average pressure is a dominant factor affecting fracture interactions and in favor of enhancing fracture network complexity.In addition,difference of reservoir average pressures in different regions of reservoir would promote the fracturing effectiveness.Factors affecting fracture interactions and reservoir treatment effectiveness are quantitatively estimated through stimulated reservoir area.This study confirms the significance of incorporating the two-phase flow process in analyses of multifracture interactions and fracture trajectory predictions during tight sandstone oil reservoir developments.展开更多
The fluid flow mechanism in porous media of enhanced oil recovery by Alkli/ Surfactant/Polymer (ASP) flooding is investigated by measuring production performance, pressure distribution and saturation distribution thro...The fluid flow mechanism in porous media of enhanced oil recovery by Alkli/ Surfactant/Polymer (ASP) flooding is investigated by measuring production performance, pressure distribution and saturation distribution through installing differential pressure transducers and saturation measuring probes in a physical model of vertical heterogeneous reservoir. The fluid flow variation in porous media is the main reason of enhanced oil recovery of ASP flooding. The pressure field and saturation field are nonlinearly coupled together and the interaction between them results in the fluid flow variation in the reservoir. In a vertical heterogeneous reservoir, the ASP agents initially flow in the high permeability layers because the resistance in the high permeability layer is increased under the physical and chemical action of adsorption, retention and emulsion. ASP flooding displaces out not only the residual oil in the high permeability layer, but also the remaining oil in the low and the middle permeability layers by increasing swept volume and displacing efficiency.展开更多
In the report the basic principles of new approach to the study of transport processes in porous medium are represented. The "percolation" approach has arisen as an attempt to overcome the traditional phenomenologic...In the report the basic principles of new approach to the study of transport processes in porous medium are represented. The "percolation" approach has arisen as an attempt to overcome the traditional phenomenological approach in the underground hydromechanics, based on the assumption of continuity of saturated porous media, which does not allow to explain and to model a number of effects arising from the fluids flow in porous media. The results obtained are very interesting not only from the scientific point of view but as the scientific basis for a number of enhanced oil recovery technologies.展开更多
文摘Through reviewing the flow theory’s birth and development history in underground porous media and contrasting the mechanics of underground fluids and mechanics of viscous fluids, this paper points out the main factors, which affect the development of the theory on oil and gas porous flow. The development law and development route of the mechanics of fluids in porous media are also summarized in this paper.
基金funded by National Natural Science Foundation of China(Grant Nos.51761135102 and 51525402)the Fundamental Research Funds for the Central Universities(Grant No.N180105029)。
文摘Tight oil reservoirs are complex geological materials composed of solid matrix,pore structure,and mixed multiple phases of fluids,particularly for oil reservoirs suffering from high content of in situ pressurized water found in China.In this regard,a coupled model considering two-phase flow of oil and water,as well as deformation and damage evolution of porous media,is proposed and validated using associated results,including the oil depletion process,analytical solution of stress shadow effect,and physical experiments on multi-fracture interactions and fracture propagation in unsaturated seepage fields.Then,the proposed model is used to study the behavior of multi-fracture interactions in an unsaturated reservoir in presence of water and oil.The results show that conspicuous interactions exist among multiple induced fractures.Interaction behavior varies from extracted geological profiles of the reservoir due to in situ stress anisotropy.The differential pressures of water and that of oil in different regions of reservoir affect interactions and trajectories of multi-fractures to a considerable degree.The absolute value of reservoir average pressure is a dominant factor affecting fracture interactions and in favor of enhancing fracture network complexity.In addition,difference of reservoir average pressures in different regions of reservoir would promote the fracturing effectiveness.Factors affecting fracture interactions and reservoir treatment effectiveness are quantitatively estimated through stimulated reservoir area.This study confirms the significance of incorporating the two-phase flow process in analyses of multifracture interactions and fracture trajectory predictions during tight sandstone oil reservoir developments.
文摘The fluid flow mechanism in porous media of enhanced oil recovery by Alkli/ Surfactant/Polymer (ASP) flooding is investigated by measuring production performance, pressure distribution and saturation distribution through installing differential pressure transducers and saturation measuring probes in a physical model of vertical heterogeneous reservoir. The fluid flow variation in porous media is the main reason of enhanced oil recovery of ASP flooding. The pressure field and saturation field are nonlinearly coupled together and the interaction between them results in the fluid flow variation in the reservoir. In a vertical heterogeneous reservoir, the ASP agents initially flow in the high permeability layers because the resistance in the high permeability layer is increased under the physical and chemical action of adsorption, retention and emulsion. ASP flooding displaces out not only the residual oil in the high permeability layer, but also the remaining oil in the low and the middle permeability layers by increasing swept volume and displacing efficiency.
文摘In the report the basic principles of new approach to the study of transport processes in porous medium are represented. The "percolation" approach has arisen as an attempt to overcome the traditional phenomenological approach in the underground hydromechanics, based on the assumption of continuity of saturated porous media, which does not allow to explain and to model a number of effects arising from the fluids flow in porous media. The results obtained are very interesting not only from the scientific point of view but as the scientific basis for a number of enhanced oil recovery technologies.