期刊文献+
共找到1,261篇文章
< 1 2 64 >
每页显示 20 50 100
Role of methoxy and C_(α)-based substituents in electrochemical oxidation mechanisms and bond cleavage selectivity of β-O-4 lignin model compounds 被引量:1
1
作者 Yang Zhou Qiang Zeng +3 位作者 Hongyan He Kejia Wu Fuqiao Liu Xuehui Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期114-125,共12页
In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro... In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations. 展开更多
关键词 Lignin model compounds β-O-4 dimers Electrochemical oxidation Oxidation mechanisms Substituent effect
下载PDF
Oxidation behavior of FeV_(2)O_(4)and FeCr_(2)O_(4)particles in the air:Nonisothermal kinetic and reaction mechanism
2
作者 Junyi Xiang Xi Lu +6 位作者 Luwei Bai Hongru Rao Sheng Liu Qingyun Huang Shengqin Zhang Guishang Pei Xuewei Lü 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1839-1848,共10页
High-temperature oxidation behavior of ferrovanadium(FeV_(2)O_(4))and ferrochrome(FeCr_(2)O_(4))spinels is crucial for the application of spinel as an energy material,as well as for the clean usage of high-chromium va... High-temperature oxidation behavior of ferrovanadium(FeV_(2)O_(4))and ferrochrome(FeCr_(2)O_(4))spinels is crucial for the application of spinel as an energy material,as well as for the clean usage of high-chromium vanadium slag.Herein,the nonisothermal oxidation behavior of FeV_(2)O_(4)and FeCr_(2)O_(4)prepared by high-temperature solid-state reaction was examined by thermogravimetry and X-ray diffraction(XRD)at heating rates of 5,10,and 15 K/min.The apparent activation energy was determined by the Kissinger-Akahira-Sunose(KAS)method,whereas the mechanism function was elucidated by the Malek method.Moreover,in-situ XRD was conducted to deduce the phase transformation of the oxidation mechanism for FeV_(2)O_(4)and FeCr_(2)O_(4).The results reveal a gradual increase in the overall apparent activation energies for FeV_(2)O_(4)and FeCr_(2)O_(4)during oxidation.Four stages of the oxidation process are observed based on the oxidation conversion rate of each compound.The oxidation mechanisms of FeV_(2)O_(4)and FeCr_(2)O_(4)are complex and have distinct mechanisms.In particular,the chemical reaction controls the entire oxidation process for FeV_(2)O_(4),whereas that for FeCr_(2)O_(4)transitions from a three-dimensional diffusion model to a chemical reaction model.According to the in-situ XRD results,numerous intermediate products are observed during the oxidation process of both compounds,eventually resulting in the final products FeVO_(4)and V2O_(5)for FeV_(2)O_(4)and Fe_(2)O_(3)and Cr_(2)O_(3)for FeCr_(2)O_(4),respectively. 展开更多
关键词 FeV_(2)O_(4) FeCr_(2)O_(4) oxidation nonisothermal kinetics mechanism
下载PDF
Formation mechanism of MgB_2 in 2LiBH_4+MgH_2 system for reversible hydrogen storage 被引量:5
3
作者 寇化秦 肖学章 +2 位作者 陈立新 李寿权 王启东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期1040-1046,共7页
The formation conditions of MgB2 in 2LiBH4 + MgH2 system during dehydrogenation were investigated and its mechanism was discussed. The results show that direct decomposition of LiBH4 is suppressed under relative high... The formation conditions of MgB2 in 2LiBH4 + MgH2 system during dehydrogenation were investigated and its mechanism was discussed. The results show that direct decomposition of LiBH4 is suppressed under relative higher initial dehydrogenation pressure of 4.0×10^5 Pa, wherein LiBH4 reacts with Mg to yield MgB2, and 9.16% (mass fraction) hydrogen is released within 9.6 h at 450 ℃. However, under relatively lower initial dehydrogenation pressure of 1.0×10^2 Pa, LiBH4 decomposes independently instead of reacting with Mg, resulting in no formation of MgB2, and 7.91% hydrogen is desorbed within 5.2 h at 450 ℃. It is found that the dehydrogenation of 2LiBH4 + MgH2 system proceeds more completely and more hydrogen desorption amount can be obtained within a definite time by forming MgB2. Furthermore, it is proposed that the formation process of MgB2 includes incubation period and nucleus growth process. Experimental results show that the formation process of MgB2, especially the incubation period, is promoted by increasing initial dehydrogenation pressure at constant temperature, and the incubation period is also influenced greatly by dehydrogenation temperature. 展开更多
关键词 complex hydride LiBH4 MGB2 hydrogen storage formation mechanism
下载PDF
Framework-solvent interactional mechanism and effect of NMP/DMF on solvothermal synthesis of [Zn_4O(BDC)_3]_8 被引量:3
4
作者 吴争平 王明雪 +4 位作者 周丽姣 尹周澜 谈进 张锦玲 陈启元 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3722-3731,共10页
In order to explore the effect mechanism of solvent on the synthesis of the metal organic framework materials, the microscopic interaction between solvent and framework and the effects of N,N-dimethyl-formamide(DMF) o... In order to explore the effect mechanism of solvent on the synthesis of the metal organic framework materials, the microscopic interaction between solvent and framework and the effects of N,N-dimethyl-formamide(DMF) or N-methyl- 2-pyrrolidone(NMP) on solvothermal synthesis of [Zn4O(BDC)3]8 were investigated through a combined DFT and experimental study. XRD and SEM showed that the absorbability of NMP in the pore of [Zn4O(BDC)3]8 was weaker than that of DMF. The thermal decomposition temperature of [Zn4O(BDC)3]8 synthesized in DMF was higher than that in NMP according to TG and FT-IR. In addition, the nitrogen sorption isotherms indicated that NMP improved gas sorption property of [Zn4O(BDC)3]8. The COSMO optimized calculations indicated that the total energy of Zn4O(BDC)3 in NMP was higher than that in DMF, and compared with non-solvent system, the charge of zinc atoms decreased and the charge value was the smallest in NMP. Furthermore, the interaction of DMF, NMP or DEF in [Zn4O(BDC)3]8 crystal model was calculated by DFT method. The results suggested that NMP should be easier to be removed from pore of materials than DMF from the point of view of energy state. It can be concluded that NMP was a favorable solvent to synthesize [Zn4O(BDC)3]8 and the microscopic mechanism was that the binding force between Zn4O(BDC)3 and NMP molecule was weaker than DMF. 展开更多
关键词 solvothermal synthesis [Zn4O(BDC)3]8 N-METHYL-2-PYRROLIDONE interactional mechanism COSMO solvation model density functional method
下载PDF
Wear behavior and mechanism of B_4C reinforced Mg-matrix composites fabricated by metal-assisted pressureless infiltration technique 被引量:2
5
作者 姚彦桃 姜澜 +1 位作者 付高峰 陈礼清 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2543-2548,共6页
The B4C/Mg composites fabricated by metal-assisted pressureless infiltration technique were used as experimental material, and the wear behavior and mechanism of this material were studied. A pin-on-disc apparatus was... The B4C/Mg composites fabricated by metal-assisted pressureless infiltration technique were used as experimental material, and the wear behavior and mechanism of this material were studied. A pin-on-disc apparatus was used to evaluate the wear behavior where loads of 20, 40, 60 and 80 N, and a sliding velocity of 250 r/min were exerted. The results show that B4C/Mg composites possess superior wear resistance than pure Mg under various applied loads, and the content of Ti, as infiltration inducer, has an influence on the wear resistance of B4C/Mg composites. The dominant wear mechanism for pure Mg is abrasion, while that for B4C/Mg composites under low loads is adhesion and delamination. Under high loads, the wear mechanism of B4C/Mg composites can be attributed to thermal softening and melting or plastic deformation. 展开更多
关键词 B4C Mg-matrix composites B4C metal-assisted infiltration wear behavior wear mechanism
下载PDF
Mechanism of action of Zhuyu Annao pill in mice with cerebral intrahemorrhage based on TLR4 被引量:10
6
作者 Wei Chen Yue-Qiang Hu +1 位作者 Ling-Fei Jiang Lin Wu 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2016年第11期1072-1077,共6页
Objective:To explore the protective effect and possible mechanism of action of Zhuyu Annao pill in mice with intracerebral hemorrhage(ICH).Methods:Sixty mice were divided into the control group,hemorrhage group,drug-t... Objective:To explore the protective effect and possible mechanism of action of Zhuyu Annao pill in mice with intracerebral hemorrhage(ICH).Methods:Sixty mice were divided into the control group,hemorrhage group,drug-treated group(after hemorrhage),TLR4-knockout hemorrhage group and TLR4-knockout hemorrhage + drug-treated group(after hemorrhage) with 12 in each group.Model of autologous ICH was established in all groups.After drilling and 12 h of fasting,models in the control group hemorrhage group and TLR4-knockout hemorrhage group were all drenched with 10 mL/kg distilled water by intragastric administration.Models in the drug-treated group and TLR4-knockout hemorrhage + drugtreated group were drenched with 6.25 g/kg of Zhuyu Annao pill.All groups were treated for 7 d.Longa scoring method was used to measure the neurological defect scores and determine the brain water contents of all groups;ELISA was employed to detect the inflammatory factor interleukin(IL)-6,tumor necrosis factor- α(TNF- α) and IL-1β in brain tissues;and Western blot was applied to test the expression quantities of apoptotic protein Bax and anti-apoptotic protein Bcl-2 in brain tissues.Results:At day 3 and7,compared with the hemorrhage group,the neurological defect scores of the drug-treated group,TLR4-knockout hemorrhage group and TLR4-knockout hemorrhage + drug-treated group decreased significantly(P<0.05) Compared with the hemorrhage group,the brain water contents of the drug-treated group,TLR4-knockout hemorrhage group and TLR4-knockout hemorrhage + drug-treated group reduced significantly(P<0.05) Compared with the hemorrhage group,the inflammatory factor IL-6,TNF-α and IL-1β of the drug-treated group,TLR4-knockout hemorrhage group and TLR4-knockout hemorrhage + drug-treated group decreased significantly(P<0.05).Compared with the hemorrhage group,the expression of apoptotic protein Bax of the drug-treated group,TLR4-knockout hemorrhage group and TLR4-knockout hemorrhage+ drug-treated group decreased significantly and the expression of anti-apoptotic protein Bcl-2 increased significantly(P<0.05).Conclusions:Zhuyu Annao pill can alleviateencephaledema for mice with ICH and reduce inflammatory responsesandnerve cell apoptosis.TLR4 can mediate inflammatory injury induced by ICH.Thus,Zhuyu Annao pill can play a protective role for brains by decreasing the expression of TLR4. 展开更多
关键词 Zhuyu Annao pill Intacerebral hemorrhage TLR4 Gene knockout mechanism
下载PDF
Synthesis of Bis-substituted Calix[4]arenes and Mechanism of Substituents Effect on K^+ and Hg^(2+) Ions Transports through Liquid Membrane 被引量:3
7
作者 陶旭晨 李磊 何瑾馨 《Journal of Donghua University(English Edition)》 EI CAS 2011年第6期621-623,共3页
New calix[4]arene derivatives containing nitro,amino and benzoyl in the upper and lower rims of molecule were successfully synthesized.Their effectiveness towards K+ and Hg2+ across bubbling liquid membrane(BLM) was e... New calix[4]arene derivatives containing nitro,amino and benzoyl in the upper and lower rims of molecule were successfully synthesized.Their effectiveness towards K+ and Hg2+ across bubbling liquid membrane(BLM) was examined.For K+ ion transfer,preserving phenolic hydroxyl in the lower rim of calix[4]arene could enhance its transport ability.When benzoyl replaced phenolic hydroxyl,the transport would fall off,because benzoyl caused steric hindrance on the K+ transfer.The study also revealed that the group having the electron-withdrawing conjugative effect on phenolic hydroxyl,-NO2 in the upper rim of calix[4]arene,made transport ability of calix[4]arene fall off.On the contrary,-NH2 that had electron-repulsive conjugative effect enhanced the transport ability of the compound.For Hg2+ ion,only -NH2 in the upper rim of calix[4]arenes had high affinity for it and contributed to Hg2+ transfer.Transport amount of Hg2+ ion increased with increasing calix[4]arene5 concentration and ΔpH in BLM. 展开更多
关键词 arene derivatives substituting groups liquid mettubrane transport polymer mechanism
下载PDF
An insight into failure mechanism of NASICON-structured Na3V2(PO4)3 in hybrid aqueous rechargeable battery 被引量:3
8
作者 Xinxin Zhang Jun Ma +6 位作者 Pu Hu Bingbing Chen Chenglong Lu Xinhong Zhou Pengxian Han Lihua Chen Guanglei Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第5期1-7,共7页
NASICON (Na-super-ionic-conductors)-structured materials have attracted extensive research interest due to their great application potential in secondary batteries. However, the mechanism of capacity fading for NASICO... NASICON (Na-super-ionic-conductors)-structured materials have attracted extensive research interest due to their great application potential in secondary batteries. However, the mechanism of capacity fading for NASICON-structured electrode materials has been rarely studied. In this paper, we synthesized the NASICON-structured Na3V2(PO4)3/C composite by simple sol-gel and high-temperature solid-phase method and investigated its electrochemical performance in Na-Zn hybrid aqueous rechargeable batteries. After characterizing the structure, morphology and composition variations as well as the interfacial resistance changes of Na3V2(PO4)3/C cathode during cycling, we propose a mechanical and interfacial degradation mechanism for capacity fading of NASICON-structured Na3V2(PO4)3/C in Na-Zn hybrid aqueous rechargeable batteries. This work will shed light on enhancing the mechanical and in terfacial stability of NASICON-structured Na3V2(PO4)3/C in Na-Zn hybrid aqueous rechargeable batteries. 展开更多
关键词 mechanical degradation Na3V2(PO4)3 Zn metal ANODE HYBRID AQUEOUS battery Failure mechanism
下载PDF
Hot deformation behavior and globularization mechanism of Ti-6Al-4V-0.1B alloy with lamellar microstructure 被引量:7
9
作者 Yang Yu Bai-Qing Xiong +1 位作者 Song-Xiao Hui Wen-Jun Ye 《Rare Metals》 SCIE EI CAS CSCD 2013年第2期122-128,共7页
Hot deformation behavior and globularization mechanism of Ti6A14V0.1B alloy with lamellar micro structure were quantitatively studied through isothermal compression tests with the temperature range of 850950 ℃and str... Hot deformation behavior and globularization mechanism of Ti6A14V0.1B alloy with lamellar micro structure were quantitatively studied through isothermal compression tests with the temperature range of 850950 ℃and strain rate range of 0.011.00 s1. The results show that the peak flow stress and steady stress are sensitive to the strain rate and temperature. The value of deformation activation energy is 890.49 kJmo11 in (a+β) region. Dynamic recrystallization is the major deformation mecha nism. Flow softening is dominated by dynamic recrystallization at 850950 ℃. TiB particles promote the recrystallization of laths. Globularization processes consist of four steps: for mation of subgrain after dynamic recovery in a plates; subgrain boundary migration caused by interracial instability; interfacial migration promoting phase wedge into a phase; disintegrating of a laths by diffusion processes; and grain boundary sliding. Globularization mechanisms during hot deformation processes of the Ti6A14V0.1B alloy with lamellar structure are continuous dynamic recrystallization. 展开更多
关键词 Ti-6A1-4V-0.1B Hot deformation Lamellarmicrostructure Globularization mechanism
下载PDF
Non-isothermal Decomposition Mechanism and Kinetics of LiClO_4 in Nitrogen 被引量:3
10
作者 DIAKITE Kahirou 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第2期300-303,共4页
The non-isothermal decomposition kinetics of LiClO4 in flow N2 atmosphere was studied. TG-DTA curves show that the decomposition proceeded through two well-defined steps below 900℃, and the mass loss was in agreement... The non-isothermal decomposition kinetics of LiClO4 in flow N2 atmosphere was studied. TG-DTA curves show that the decomposition proceeded through two well-defined steps below 900℃, and the mass loss was in agreement with the theoretical value. XRD profile demonstrates that the product of the thermal decomposition at 500℃ is LiCI. For the decomposition kinetics study, the activation energies calculated with the Friedman method were considered as the initial values for non-linear regression and were used for verifying the correctness of the fired models. The decomposition process was fitted by a two-step consecutive reaction: extended Prout-Tompkins equation[Bna, f(α) is (1-α)^nα^α] followed by a lth order reaction(F1). The activation energies were (215.6±0.2) and (251.6±3.6) kJ/mol, respectively. The exponentials n and a for Bna reaction were (0.25±0.05) and (0.795±0.005), respectively. The reaction types and activation energies were in agreement with those obtained from the isothermal method, but the exponentials were optimized for better firing and prediction. 展开更多
关键词 LICLO4 Decomposition mechanism Non-isothermal kinetics Non-linear regression
下载PDF
Microemulsion synthesis of ZnMn2O4/Mn3O4 sub-microrods for Li-ion batteries and their conversion reaction mechanism 被引量:5
11
作者 Ting-ting FENG Jian YANG +2 位作者 Si-yi DAI Jun-chao WANG Meng-qiang WU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第1期265-276,共12页
The hierarchical ZnMn2O4/Mn3O4 composite sub-microrods were synthesized via a water-in-oil microemulsion method followed by calcination.The ZnMn2O4/Mn3O4 electrode displays an intriguing capacity increasing from 440 t... The hierarchical ZnMn2O4/Mn3O4 composite sub-microrods were synthesized via a water-in-oil microemulsion method followed by calcination.The ZnMn2O4/Mn3O4 electrode displays an intriguing capacity increasing from 440 to 910 mA·h/g at 500 mA/g during 550 consecutive discharge/charge cycles,and delivers an ultrahigh capacity of 1276 mA·h/g at 100 mA/g,which is much greater than the theoretical capacity of either ZnMn2O4 or Mn3O4 electrode.To investigate the underlying mechanism of this phenomenon,cyclic voltammetry and differential capacity analysis were applied,both of which reveal the emergence and the growth of new reversible redox reactions upon charge/discharge cycling.The new reversible conversions are probably the results of an activation process of the electrode material during the cycling process,leading to the climbing charge storage.However,the capacity exceeding the theoretical value indicates that there are still other factors contributing to the increasing capacity. 展开更多
关键词 ZnMn2O4/Mn3O4 sub-microrods MICROEMULSION conversion reaction mechanism cyclic voltammetry differential capacity analysis
下载PDF
Reaction mechanism of roasting Zn_2SiO_4 using NaOH 被引量:4
12
作者 Xiao-yi SHEN Hong-mei SHAO +3 位作者 Hui-min GU Bing CHEN Yu-chun ZHAI Pei-hua MA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第9期1878-1886,共9页
The reaction kinetics of roasting zinc silicate using NaOH was investigated.The orthogonal test was employed to optimize the reaction conditions and the optimized reaction conditions were as follows:molar ratio of NaO... The reaction kinetics of roasting zinc silicate using NaOH was investigated.The orthogonal test was employed to optimize the reaction conditions and the optimized reaction conditions were as follows:molar ratio of NaOH to Zn2SiO4 of 16:1,reaction temperature of 550°C,and reaction time of 2.5 h.In order to ascertain the phases transformation and reaction processes of zinc oxide and silica,the XRD phase analysis was used to analyze the phases of these specimens roasted at different temperatures.The final phases of the specimen roasted at 600°C were Na2ZnO2,Na4SiO4,Na2ZnSiO4 and NaOH.The reaction kinetic equation of roasting was determined by the shrinking unreacted core model.Aiming to investigate the reaction mechanism,two control models of reaction rate were applied:chemical reaction at the particle surface and diffusion through the product layer.The results indicated that the diffusion through the product layer model described the reaction process well.The apparent activation energy of the roasting was 19.77 kJ/mol. 展开更多
关键词 reaction mechanism KINETICS Zn2SiO4 NaOH roasting reaction process phase transformation
下载PDF
Study on the oxidation mechanism of Al-SiC composite at elevated temperature
13
作者 Jishuo Han Yong Li +3 位作者 Chenhong Ma Qingyao Zheng Xiuhua Zhang Xiaofang Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2077-2087,共11页
Resin-bonded Al-SiC composite was sintered at 1100,1300,and 1500℃ in the air,the oxidation mechanism was investigated.The reaction models were also established.The oxidation resistance of the Al-SiC composite was sig... Resin-bonded Al-SiC composite was sintered at 1100,1300,and 1500℃ in the air,the oxidation mechanism was investigated.The reaction models were also established.The oxidation resistance of the Al-SiC composite was significantly enhanced with temperature increase.SiC in the exterior of the composite was partially oxidized slightly,while the transformation of metastable Al_(4)C_(3) to stable Al_(4)SiC_(4) existed in the interior.At 1100℃,Al in the interior reacted with residual C to form Al_(4)C_(3).With increasing to 1300℃,high temperature and low oxygen partial pressure lead to active oxidation of SiC,and internal gas composition transforms to Al_(2)O(g)+CO(g)+SiO(g)as the reaction proceeds.After Al_(4)C_(3) is formed,CO(g)and SiO(g)are continuously deposited on its surface,transforming to Al_(4)SiC_(4).At 1500℃,a dense layer consisting of SiC and Al_(4)SiC_(4) whiskers is formed which cuts off the diffusion channel of oxygen.The active oxidation of SiC is accelerated,enabling more gas to participate in the synthesis of Al_(4)SiC_(4),eventually forming hexagonal lamellar Al_(4)SiC_(4) with mutual accumulation between SiC particles.Introducing Al enhances the oxidation resistance of SiC.In addition,the in situ generated non-oxide is uniformly dispersed on a micro-scale and bonds SiC stably. 展开更多
关键词 Al-SiC composite kiln furniture Al_(4)SiC_(4) Al_(4)C_(3) oxidation mechanism
下载PDF
Review on Li-insertion/extraction Mechanisms of LiFePO4 Cathode Materials 被引量:3
14
作者 WU Yi-Fang CHONG Shao-Kun +3 位作者 LIU Yong-Ning GUO Sheng-Wu BAILi-Feng LI Cheng-Shan 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2018年第12期2011-2023,1847,共14页
The work distills the main mechanisms during the lithium insertion/extraction of LiFePO_4 cathode materials. The "diffusion-controlled" and "phase-boundary controlled" mechanism are especially illu... The work distills the main mechanisms during the lithium insertion/extraction of LiFePO_4 cathode materials. The "diffusion-controlled" and "phase-boundary controlled" mechanism are especially illustrated. Meanwhile, some recent observation and analyses by in-situ or in operando on the Li-insertion/extraction of LiFePO_4 are summarized and prospected. 展开更多
关键词 Li-ion battery LIFEPO4 Li-insertion/extraction mechanism REVIEW
下载PDF
The Mechanism of Sol-Gel Synthesis of Normal Spinel LiMn_2O_4 with Chelation of Citric Acid 被引量:1
15
作者 巫辉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第4期21-24,共4页
The sol-gel process of citric acid chelating with metal cations for the synthesis of normal spinel LiMn 2O 4 and the reaction mechanism were investigated by means of XRD,IR,TG-DTA, and SEM.The results show that at t... The sol-gel process of citric acid chelating with metal cations for the synthesis of normal spinel LiMn 2O 4 and the reaction mechanism were investigated by means of XRD,IR,TG-DTA, and SEM.The results show that at the beginning lithium citrate and chelate compound of citric acid with manganese ions formed,and then with heating the esterification and condensation reactions occured between them and glycol.The products obtained are polymers in which metal cations are distributed homogeneously on atomic scale that ensure high reactivity to cations of Li + and Mn 2+.Firing the gel prepared by this process,the lattice diffusions of solid reactant ions caused by non-homogeneity of reactants are eliminated and avoided.At 400℃ phase-pure LiMn 2O 4 with nanometer scale crystallization having precise stoichiometry and perfect crystallization can be obtained.The model of chelate coordinate of double-molecule between citric acid and Mn 2+ in the gel network is proposed.It is important for explaining the dispersion state of Mn 2+ and the formation process of gel by this model. 展开更多
关键词 sol-gel process chelation of citric acid LiMn 2O 4 mechanism of reaction
下载PDF
Mechanical Properties and Electronic Structures of M(M=Ti,V,Cr,Mn and Fe)Dopedβ-Si_(3)N_(4) from First-Principle
16
作者 龙敏 黄福祥 +4 位作者 XU Liangyu LI Xuemei YANG Zhou LENG Yue MEI Shini 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期639-644,共6页
The structures,mechanical properties and electronic structures of M metals(M=Ti,V,Cr,Mn and Fe)dopedβ-Si_(3)N_(4) were investigated by First-principles calculations within CASTEP.The calculated lattice parameters of... The structures,mechanical properties and electronic structures of M metals(M=Ti,V,Cr,Mn and Fe)dopedβ-Si_(3)N_(4) were investigated by First-principles calculations within CASTEP.The calculated lattice parameters ofβ-Si_(3)N_(4) were consistent with previous date.The cohesive energy and formation enthalpy show that initialβ-Si_(3)N_(4) has the highest structural stability.The calculated elastic constant and the Voigt-Reuss-Hill approximation indicate that elastic moduli ofβ-Si_(3)N_(4) are slightly reduced by M doping.Based on Poisson’s and Pugh’s ratio,β-Si_(3)N_(4) is a ductile material and the toughness ofβ-Si_(3)N_(4) increases with M doping,and Fe doping exhibited the best toughness.The results of density of states,charge distributions and overlapping populations indicate thatβ-Si_(3)N_(4) has the strong covalent and ionic bond strength between N and Si. 展开更多
关键词 first-principles β-Si_(3)N_(4) mechanical properties electronic structure
下载PDF
Effects of Diamond on the Mechanical Properties and Thermal Conductivity of Si_(3)N_(4)Composites Fabricated Using Spark Plasma Sintering
17
作者 GAO Ying LIU Di +6 位作者 WANG Aiyang ZHANG Song HE Qianglong REN Shifeng FANG Jie WANG Zihan WANG Weimin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1319-1324,共6页
Micrometer-sized diamonds were incorporated into silicon nitride(Si_(3)N_(4))matrix to manufacture high-performance Si_(3)N_(4)-based composites using spark plasma sintering at 1500℃under 50 MPa.The effects of the di... Micrometer-sized diamonds were incorporated into silicon nitride(Si_(3)N_(4))matrix to manufacture high-performance Si_(3)N_(4)-based composites using spark plasma sintering at 1500℃under 50 MPa.The effects of the diamond content on the phase composition,microstructure,mechanical properties and thermal conductivity of the composites were investigated.The results showed that the addition of diamond could effectively improve the hardness of the material.The thermal conductivity of Si_(3)N_(4)increased to 52.97 W/m·k at the maximum with the addition of 15 wt%diamond,which was 27.5%higher than that of the monolithic Si_(3)N_(4).At this point,the fracture toughness was 7.54 MPa·m^(1/2).Due to the addition of diamond,the composite material generated a new substance,MgSiN2,which effectively combined Si_(3)N_(4)with diamond.MgSiN2 might improve the hardness and thermal conductivity of the materials. 展开更多
关键词 spark plasma sintering Si_(3)N_(4) DIAMOND thermal conductivity mechanical properties
下载PDF
Porous core–shell CoMn_2O_4 microspheres as anode of lithium ion battery with excellent performances and their conversion reaction mechanism investigated by XAFS 被引量:2
18
作者 Hang Su Yue-Feng Xu +4 位作者 Shou-Yu Shen Jian-Oiang wang Jun-Tao Li Ling Huang Shi-Gang Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1637-1643,共7页
Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electroch... Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electrochemical properties. The CoMn204 anode can deliver a large capacity of 1070 mAh g-1 in thefirst discharge, a reversible capacity of 500 mAh g^-1 after 100 cycles with a coulombic efficiency of 98.5% at a charge-discharge current density of 200 mA g^-l, and a specific capacity of 385 mAh g^-1 at a muchhigher charge-discharge current density of 1600mA g^-1. Synchrotron X-ray absorption fine structure(XAFS) techniques were applied to investigate the conversion reaction mechanism of the CoMn204 anode.The X-ray absorption near edge structure (XANES) spectra revealed that, in the first discharge-charge cy-cle, Co and Mn in CoMn204 were reduced to metallic Co and Mn when the electrode was discharged to0.01 V, while they were oxidized respectively to CoO and MnO when the electrode was charged to 3.0V.Experiments of both XANE5 and extended X-ray absorption fine structure (EXAFS) revealed that neithervalence evolution nor phase transition of the porous core-shell CoMn204 microspheres could happen inthe discharge plateau from 0.8 to 0.6V, which demonstrates the formation of solid electrolyte interface(SEI) on the anode. 展开更多
关键词 Lithium ion battery Porous core-shell CoMn2O4 anode Conversion reaction mechanism XAFS
下载PDF
Core-Shell Structure of NaYF4@SiO2@Au Nanocomposite of Synthesis and Characterization with Mechanisms Research 被引量:1
19
作者 WU Rui GE Hongguang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第4期900-905,共6页
A facile method for preparing monodisperse NaYF4@SiO2@Au core-shell nanocomposite was developed. Transmission electron microscopy(TEM) as well as EDX(energy dispersive X-ray) was used to characterize the samples. The ... A facile method for preparing monodisperse NaYF4@SiO2@Au core-shell nanocomposite was developed. Transmission electron microscopy(TEM) as well as EDX(energy dispersive X-ray) was used to characterize the samples. The TEM showed the composite was a core-shell structure, spherical,with the uniform size of about 100 nm. TEM and EDX revealed that the NPs were coated with a layer of SiO2 and Au shell. The core shell structure of NaYF4@SiO2@Au nanocomposite could dispersed in water easily. More importantly,after being coated with SiO2 and Au, it was feasible for function by-SH and-NH2 groups, respectively. The forming process of the Au shell was monitored with TEM. The mechanism of coating Au shell was discussed in detail. It is expected that the core shell nanoparticle will act as multifunctional molecular imaging probes, such as positron emission tomography(PET), magnetic resonance imaging(MRI), optical imaging(OI), or contrast agent for sensing and detection. 展开更多
关键词 NaYF4@SiO2@Au CORE-SHELL synthesis mechanism
下载PDF
PAM Templating Mechanism for Synthesis of A Novel LiFePO_4 Cathode Material 被引量:1
20
作者 YANGShu-ting ZHAONa-hong +2 位作者 DONGHong-yu YUEHong-yun YANGJin-xin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第3期309-314,共6页
A novel templated LiFePO_4 cathode material was prepared with linear polyacrylamide, which exhibited excellent electrochemical properties, such as a 109.3 mA·h/g capacity at a rate of C/3 and a 120 mA·h/g ca... A novel templated LiFePO_4 cathode material was prepared with linear polyacrylamide, which exhibited excellent electrochemical properties, such as a 109.3 mA·h/g capacity at a rate of C/3 and a 120 mA·h/g capacity at a rate of C/6 as well as a good cycliability. We proposed the templating mechanism based upon the precursors′ TG-DTA curves, X-ray diffraction patterns and FTIR spectra of the samples at different temperatures. A tapping-mode atomic force microscope was used to investigate the surfaces of the end products. We found that the polyacrylamide template produced metal organic compounds in the cross-linked gel precursor, and thereby modified the crystallization and particle surfaces during calcining. The template was “removed” in the end, which was partially pyrolyzed into the spiral carbon to form a conductive network with nanocrys\|talline LiFePO_4 highly monodispersed in it. 展开更多
关键词 LiFePO_4 Lithium ion battery Template mechanism Tapping-mode atomic force microscope
下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部