期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Two-dimensional Numerical Modeling Research on Continent Subduction Dynamics 被引量:4
1
作者 WANGZhimin XUBei +2 位作者 ZHOUYaoqi XUHehua HUANGShaoying 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第1期313-319,共7页
Continent subduction is one of the hot research problems in geoscience. New models presented here have been set up and two-dimensional numerical modeling research on the possibility of continental subduction has been ... Continent subduction is one of the hot research problems in geoscience. New models presented here have been set up and two-dimensional numerical modeling research on the possibility of continental subduction has been made with the finite element software, ANSYS, based on documentary evidence and reasonable assumptions that the subduction of oceanic crust has occurred, the subduction of continental crust can take place and the process can be simplified to a discontinuous plane strain theory model. The modeling results show that it is completely possible for continental crust to be subducted to a depth of 120 km under certain circumstances and conditions. At the same time, the simulations of continental subduction under a single dynamical factor have also been made, including the pull force of the subducted oceanic lithosphere, the drag force connected with mantle convection and the push force of the mid-ocean ridge. These experiments show that the drag force connected with mantle convection is critical for continent subduction. 展开更多
关键词 continent subduction application of ANSYS software dynamic mechanism modeling plate tectonics
下载PDF
Dynamic Analysis of Propulsion Mechanism Directly Driven by Wave Energy for Marine Mobile Buoy 被引量:8
2
作者 YU Zhenjiang ZHENG Zhongqiang +1 位作者 YANG Xiaoguang CHANG Zongyu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期710-715,共6页
Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science.Great progress has been made,however the technology in this area is far from maturity in theory and faced with many... Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science.Great progress has been made,however the technology in this area is far from maturity in theory and faced with many difficulties in application.A dynamic model of the propulsion mechanism is very necessary for optimizing the parameters of the MMB,especially with consideration of hydrodynamic force.The principle of wave-driven propulsion mechanism is briefly introduced.To set a theory foundation for study on the MMB,a dynamic model of the propulsion mechanism of the MMB is obtained.The responses of the motion of the platform and the hydrofoil are obtained by using a numerical integration method to solve the ordinary differential equations.A simplified form of the motion equations is reached by omitting terms with high order small values.The relationship among the heave motion of the buoy,stiffness of the elastic components,and the forward speed can be obtained by using these simplified equations.The dynamic analysis show the following:The angle of displacement of foil is fairly small with the biggest value around 0.3 rad;The speed of mobile buoy and the angle of hydrofoil increased gradually with the increase of heave motion of buoy;The relationship among heaven motion,stiffness and attack angle is that heave motion leads to the angle change of foil whereas the item of speed or push function is determined by vertical velocity and angle,therefore,the heave motion and stiffness can affect the motion of buoy significantly if the size of hydrofoil is kept constant.The proposed model is provided to optimize the parameters of the MMB and a foundation is laid for improving the performance of the MMB. 展开更多
关键词 propulsion mechanism marine mobile buoy dynamic model hydrodynamics Morision's equation
下载PDF
Dynamic model and performance analysis of landing buffer for bionic locust mechanism 被引量:5
3
作者 Dian-Sheng Chen Zi-Qiang Zhang Ke-Wei Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期551-565,共15页
The landing buffer is an important problem in the research on bionic locust jumping robots, and the different modes of landing and buffering can affect the dynamic performance of the buffering process significantly. B... The landing buffer is an important problem in the research on bionic locust jumping robots, and the different modes of landing and buffering can affect the dynamic performance of the buffering process significantly. Based on an experimental observation, the different modes of landing and buffering are determined, which include the different numbers of landing legs and different motion modes of legs in the buffering process. Then a bionic locust mechanism is established, and the springs are used to replace the leg muscles to achieve a buffering effect. To reveal the dynamic performance in the buffering process of the bionic locust mechanism, a dynamic model is established with different modes of landing and buffering. In particular, to analyze the buffering process conveniently, an equivalent vibration dynamic model of the bionic locust mechanism is proposed.Given the support forces of the ground to the leg links, which can be obtained from the dynamic model, the spring forces of the legs and the impact resistance of each leg are the important parameters affecting buffering performance, and evaluation principles for buffering performance are proposed according to the aforementioned parameters. Based on the dynamic model and these evaluation principles, the buffering performances are analyzed and compared in different modes of landing and buffering on a horizontal plane and an inclined plane. The results show that the mechanism with the ends of the legs sliding can obtain a better dynamic performance. This study offers primary theories for buffering dynamics and an evaluation of landing buffer performance,and it establishes a theoretical basis for studies and engineering applications. 展开更多
关键词 Bionic locust mechanism Landing and buffering Dynamic model Buffering performance
下载PDF
MODELING AND IMPLEMENTATION OF SPEED GOVERNOR FOR THE HYBRID ELECTRIC VEHICLE ENGINE 被引量:1
4
作者 Feng Qishan Zhang Jianwu Yin Chengliang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期603-608,共6页
A speed control analysis for an in-line gasoline fueled internal combustion (IC) engine is presented for the purpose of alleviation of high frequency oscillations in engine revolutions. A dynamic cylinder-by-cylinde... A speed control analysis for an in-line gasoline fueled internal combustion (IC) engine is presented for the purpose of alleviation of high frequency oscillations in engine revolutions. A dynamic cylinder-by-cylinder model is proposed, base on slider-crank mechanism, which is extended to develop a digital governor providing a high fidelity estimation of rotary speed oscillation for hybrid vehicle engines. A modified PID controller that P and I gain is placed in feedback path is also described for hybrid electric vehicle (HEV) engine speed regulation, By comparison between measured and estimated signals, it is demonstrated that a good agreement has been achieved and the governor behaves an excellent damping speed ripple. 展开更多
关键词 Digital speed governor Engine dynamic model Slider-crank mechanism Hybrid electric vehicle (HEV)
下载PDF
Dynamic Mechanical Characteristics and Damage Evolution Model of Granite
5
作者 Shuaifeng Wu Yingqi Wei +2 位作者 Hong Cai Bei Jia Dianshu Liu 《Journal of Beijing Institute of Technology》 EI CAS 2018年第2期302-311,共10页
By using the technique of the split Hopkinson pressure bar( SHPB),impact tests at different stress wavelengths( 0. 8-2. 0 m) and strain rates( 20-120 s^(-1)) were conducted to study the dynamic mechanical prop... By using the technique of the split Hopkinson pressure bar( SHPB),impact tests at different stress wavelengths( 0. 8-2. 0 m) and strain rates( 20-120 s^(-1)) were conducted to study the dynamic mechanical properties and damage accumulation evolution lawof granite. Test results showthat the dynamic compressive strength and strain rate of granite have a significantly exponential correlation;the relationship between peak strain and strain rate is approximately linear,and the increase of wavelengths generally makes the level of peak strain uplift. The multiple-impacts test at a lowstrain rate indicates that at the same wavelength,the cumulative damage of granite shows an exponential increasing form with the increase of strain rate; when keeping the increase of strain rate constant and increasing the stress wavelength,the damage accumulation effect of granite is intensified and still shows an exponential increasing form; under the effect of multiple impacts,the damage development trend of granite is similar overall,but the increase rate is accelerating. Therefore the damage evolution model was established on the basis of the exponential function while the physical meaning of parameters in the model was determined. The model can reflect the effect of the wave parameters and multiple impacts. The validity of the model and the physical meaning of the parameters were verified by the test,which further offer a reference for correlational research and engineering application for the granite. 展开更多
关键词 split Hopkinson pressure bar(SHPB) stress wave parameter dynamic mechanical property damage model
下载PDF
Modeling nanoscale ice adhesion 被引量:1
6
作者 Senbo Xiao Jianying He Zhiliang Zhang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第3期224-226,共3页
Anti-icing is crucial for numerous instruments and devices in low temperature circum- stance. One of the approaches in anti-icing is to reduce ice adhesion strength, seeking spontaneous de-icing processes by natural f... Anti-icing is crucial for numerous instruments and devices in low temperature circum- stance. One of the approaches in anti-icing is to reduce ice adhesion strength, seeking spontaneous de-icing processes by natural forces of gravity or by winds. In order to enable tai- lored surface icephobicity design, research requires a good theoretical understanding of the atomistic interacting mechanisms between water/ice molecules and their adhering substrates. Herein, this work focuses on using atomistic modeling and molecular dynamics simulation to build a nanosized ice-cube adhering onto silicon surface, with different contact modes of solid-solid and solid-liquid-solid patterns. This study provides atomistic models for probing nanoscale ice adhesion mechanics and theoretical platforms for explaining experimental results. 展开更多
关键词 Anti-icing Atomistic modeling Molecular dynamics Adhesion Interface mechanics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部