期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Matching between mechanics and thermodynamics among 4 individual strokes in a 4-stroke engine by non-circular gear mechanism
1
作者 ZHAO Yuan-ping HE Chang-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2112-2126,共15页
The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal ... The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal combustion engine is identified,which is believed to be one of the important limiting factors of energy efficiency for conventional engines available in the current market.An approach for engine efficiency improvement through optimal matching between mechanics and thermodynamics(OMBMT)is proposed.An ideal matching model is defined and the conflicts due to the constraints among the mapping strokes in a 4-stroke engine are analyzed.A novel mechanical model is built for approaching optimal matching among all 4 individual strokes in a 4-stroke spark-ignition engine,which is composed of non-circular gears(NCG)and integrated with conventional slider crank engine mechanism.By means of digital mechanical model and numerical simulation,the matching gains among all 4 strokes are defined and calculated for quantifying the NCG engine efficiency improvement by comparing with a baseline engine.The potentials with the OMBMT implemented and the enhancements made by NCG mechanism for engines in terms of overall engine efficiency are reported.Based on the results achieved,it is recommended that the feasibility studies and the experimental validations should be conducted to verify the engine matching concept and effectiveness of the NCG mechanism engine model proposed,and the engine performance and NCG design parameters should be further optimized. 展开更多
关键词 ENGINE engine matching optimization optimal matching between mechanics and thermodynamics(OMBMT) matching gain engine efficiency improvement non-circular gears(NCG) NCG engine
下载PDF
Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range 被引量:2
2
作者 Peng Zhou Jun-hong Chen +3 位作者 Meng Liu Peng Jiang Bin Li Xin-mei Hou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第7期804-813,共10页
To enhance the microwave absorption performance of silicon carbide nanowires(SiCNWs), SiO_2 nanoshells with a thickness of approximately 2 nm and Fe_3O_4 nanoparticles were grown on the surface of SiCNWs to form SiC... To enhance the microwave absorption performance of silicon carbide nanowires(SiCNWs), SiO_2 nanoshells with a thickness of approximately 2 nm and Fe_3O_4 nanoparticles were grown on the surface of SiCNWs to form SiC@SiO_2@Fe_3O_4 hybrids. The microwave absorption performance of the SiC@SiO_2@Fe_3O_4 hybrids with different thicknesses was investigated in the frequency range from 2 to 18 GHz using a free-space antenna-based system. The results indicate that SiC@SiO_2@Fe_3O_4 hybrids exhibit improved microwave absorption. In particular, in the case of an SiC@SiO_2 to iron(III) acetylacetonate mass ratio of 1:3, the microwave absorption with an absorber of 2-mm thickness exhibited a minimum reflection loss of-39.58 d B at 12.24 GHz. With respect to the enhanced microwave absorption mechanism, the Fe_3O_4 nanoparticles coated on SiC@SiO_2 nanowires are proposed to balance the permeability and permittivity of the materials, contributing to the microwave attenuation. 展开更多
关键词 silicon carbide nanowires hybrids microwave absorption mechanism impedance match
下载PDF
Matching mechanism analysis on an adaptive cycle engine 被引量:23
3
作者 Zheng Junchao Chen Min Tang Hailong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第2期706-718,共13页
As a novel aero-engine concept,adaptive cycle aero-engines(ACEs) are attracting wide attention in the international aviation industry due to their potential superior task adaptability along a wide flight regime.Howe... As a novel aero-engine concept,adaptive cycle aero-engines(ACEs) are attracting wide attention in the international aviation industry due to their potential superior task adaptability along a wide flight regime.However,this superior task adaptability can only be demonstrated through proper combined engine control schedule design.It has resulted in an urgent need to investigate the effect of each variable geometry modulation on engine performance and stability.Thus,the aim of this paper is to predict and discuss the effect of each variable geometry modulation on the matching relationship between engine components as well as the overall engine performance at different operating modes,on the basis of a newly developed nonlinear component-based ACE performance model.Results show that at all four working modes,turning down the high pressure compressor variable stator vane,the low pressure turbine variable nozzle,the nozzle throat area,and turning up the core-driven fan stage variable stator vane,the high pressure turbine variable nozzle can increase the thrust at the expense of a higher high pressure turbine inlet total temperature.However,the influences of these adjustments on the trends of various engine components' working points and working lines as well as the ratio of the rotation speed difference are different from each other.The above results provide valuable guidance and advice for engine combined control schedule design. 展开更多
关键词 Adaptive cycle engine matching relationship matching mechanism PERFORMANCE Variable geometries
原文传递
Exploration of acceptable operating range for a compression system in a double bypass engine
4
作者 Ruoyu WANG Xianjun YU +1 位作者 Baojie LIU Guangfeng AN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期111-122,共12页
The variable cycle engine is distinguished by its highly adjustable compression system,whose aerodynamic characteristic is extremely complex.To explore the regulation range of a double bypass engine compression system... The variable cycle engine is distinguished by its highly adjustable compression system,whose aerodynamic characteristic is extremely complex.To explore the regulation range of a double bypass engine compression system,a multi-dimensional analysis method is developed,through which the coupling mechanism between the compressor component and the bypass is examined.The operation zones of the compressor components and the bypass system are proposed,and the operation range of the compression system is obtained by calculating the overlapping part of the operation zones.The results show that in the double bypass mode,there exists a minimum mode selector valve area and a minimum core driven fan stage stall margin that ensures a feasible bypass flow,the two parameters correspond to each other.Under the given fan and core driven fan stage conditions,the maximum value of the inner bypass ratio is restricted by the upper limit of the forward variable area bypass injector and the maximum Mach number in the total bypass,while the minimum value of the inner bypass ratio depends on the lower limit of the forward variable area bypass injector geometry and the system recirculation margin.The single bypass mode is a unique condition of the double bypass mode,as the operation zone of the compressor component degenerates from a two-dimensional surface to a straight line.There are multiple bypass states available in the single bypass mode,while the regulation range of the bypass ratio is jointly restricted by the operation range of the high pressure compressor and the aerodynamic boundary of the forward variable area bypass injector. 展开更多
关键词 Compression system Coupling effect matching mechanism Multi-dimensional method Operation range Variable cycle engine
原文传递
Iontronic pressure sensor with high sensitivity and linear response over a wide pressure range based on soft micropillared electrodes 被引量:12
5
作者 Peng Lu Liu Wang +11 位作者 Pang Zhu Jun Huang Yueji Wang Ningning Bai Yan Wang Gang Li Junlong Yang Kewei Xie Jianming Zhang Bo Yu Yuan Dai Chuan Fei Guo 《Science Bulletin》 SCIE EI CSCD 2021年第11期1091-1100,M0003,共11页
Electronic skins and flexible pressure sensors are important devices for advanced healthcare and intelligent robotics.Sensitivity is a key parameter of flexible pressure sensors.Whereas introducing surface microstruct... Electronic skins and flexible pressure sensors are important devices for advanced healthcare and intelligent robotics.Sensitivity is a key parameter of flexible pressure sensors.Whereas introducing surface microstructures in a capacitive-type sensor can significantly improve its sensitivity,the signal becomes nonlinear and the pressure response range gets much narrower,significantly limiting the applications of flexible pressure sensors.Here,we designed a pressure sensor that utilizes a nanoscale iontronic interface of an ionic gel layer and a micropillared electrode,for highly linear capacitance-to-pressure response and high sensitivity over a wide pressure range.The micropillars undergo three stages of deformation upon loading:initial contact(0-6 k Pa)and structure buckling(6-12 k Pa)that exhibit a low and nonlinear response,as well as a post-buckling stage that has a high signal linearity with high sensitivity(33.16 k Pa-1)over a broad pressure range of 12-176 k Pa.The high linearity lies in the subtle balance between the structure compression and mechanical matching of the two materials at the gel-electrode interface.Our sensor has been applied in pulse detection,plantar pressure mapping,and grasp task of an artificial limb.This work provides a physical insight in achieving linear response through the design of appropriate microstructures and selection of materials with suitable modulus in flexible pressure sensors,which are potentially useful in intelligent robots and health monitoring. 展开更多
关键词 Iontronic interface LINEARITY Flexible pressure sensor Mechanical matching
原文传递
Design principles in mechanically adaptable biomaterials for repairing annulus fibrosus rupture:A review
6
作者 Dan Zhou Hongmei Liu +1 位作者 Zhaomin Zheng Decheng Wu 《Bioactive Materials》 SCIE 2024年第1期422-439,共18页
Annulus fibrosus(AF)plays a crucial role in the biomechanical loading of intervertebral disc(IVD).AF is difficult to self-heal when the annulus tears develop,because AF has a unique intricate structure and biologic mi... Annulus fibrosus(AF)plays a crucial role in the biomechanical loading of intervertebral disc(IVD).AF is difficult to self-heal when the annulus tears develop,because AF has a unique intricate structure and biologic milieu in vivo.Tissue engineering is promising for repairing AF rupture,but construction of suitable mechanical matching devices or scaffolds is still a grand challenge.To deeply know the varied forces involved in the movement of the native annulus is highly beneficial for designing biomimetic scaffolds to recreate the AF function.In this review,we overview six freedom degrees of forces and adhesion strength on AF tissue.Then,we summarize the mechanical modalities to simulate related forces on AF and to assess the characteristics of biomaterials.We finally outline some current advanced techniques to develop mechanically adaptable biomaterials for AF rupture repair. 展开更多
关键词 Annulus fibrosus Forces Mechanical matching High tough High adhesion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部