To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were dev...To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.展开更多
This paper takes No.52 return uphill roadway of Yangquhe coal mine as a research project. Based on the research, especially its geological condition, indoor experiments, numerical simulation and theoretical analysis w...This paper takes No.52 return uphill roadway of Yangquhe coal mine as a research project. Based on the research, especially its geological condition, indoor experiments, numerical simulation and theoretical analysis were employed to determine the difficult coefficients of Yangquhe project. By using these means,the difficult coefficients of the deep rock engineering were determined. From a study of the effects of crustal stress and the roof mechanism on roadway stability, the transformation mechanism in Yangquhe coal mine has been determined. As a result of this research, the interactive support technology of prestressed cable mesh was developed and the technology tested in mining engineering, which proved to be feasible.展开更多
In order to enhance the sealing quality and assemble efficiency of hydraulic supports, the evaluation system for the sealability of the hydraulic support and jack's seals was established through the testing and exper...In order to enhance the sealing quality and assemble efficiency of hydraulic supports, the evaluation system for the sealability of the hydraulic support and jack's seals was established through the testing and experimenting technology in respects, such as seals' dimensions, reasonable amounts of compression, sealability, life, resistance to pressure, etc. Through life detecting test of the seal, found the longest life seal ring under the same conditions, and through the reciprocating test of the hydraulic support, found the most appropriate amount of interference between the groove and the seal ring, thus, to decrease the leakage and extend the life span of the hydraulic support.展开更多
基金the National Basic Research Program of China (No.2014CB046905)Innovation Project for Graduates in Jiangsu Province (No.KYLX15_1405)+1 种基金the National Natural Science Foundation of China (Nos.51274191 and 51404245)the Doctoral Fund of Ministry of Education of China (No.20130095110018)
文摘To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.
文摘This paper takes No.52 return uphill roadway of Yangquhe coal mine as a research project. Based on the research, especially its geological condition, indoor experiments, numerical simulation and theoretical analysis were employed to determine the difficult coefficients of Yangquhe project. By using these means,the difficult coefficients of the deep rock engineering were determined. From a study of the effects of crustal stress and the roof mechanism on roadway stability, the transformation mechanism in Yangquhe coal mine has been determined. As a result of this research, the interactive support technology of prestressed cable mesh was developed and the technology tested in mining engineering, which proved to be feasible.
文摘In order to enhance the sealing quality and assemble efficiency of hydraulic supports, the evaluation system for the sealability of the hydraulic support and jack's seals was established through the testing and experimenting technology in respects, such as seals' dimensions, reasonable amounts of compression, sealability, life, resistance to pressure, etc. Through life detecting test of the seal, found the longest life seal ring under the same conditions, and through the reciprocating test of the hydraulic support, found the most appropriate amount of interference between the groove and the seal ring, thus, to decrease the leakage and extend the life span of the hydraulic support.