期刊文献+
共找到10,102篇文章
< 1 2 250 >
每页显示 20 50 100
Degree of Freedom Analysis for Holographic MIMO Based on a Mutual-Coupling-Compliant Channel Model
1
作者 SUN Yunqi JIAN Mengnan +2 位作者 YANG Jun ZHAO Yajun CHEN Yijian 《ZTE Communications》 2024年第1期34-40,共7页
Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the ... Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the antenna number.However,recent studies suggest that the DOF could be less than the antenna number when strong mutual coupling is considered.We utilize a mutual-coupling-compliant channel model to investigate the DOF of the holographic MIMO(HMIMO)channel and give a upper bound of the DOF with strong mutual coupling.Our numerical simulations demonstrate that a dense array can support more DOF per unit aperture as compared with a half-wavelength MIMO system. 展开更多
关键词 channel model degree of freedom holographic MIMO mutual coupling
下载PDF
Contrasts of bimodal tropical instability waves(TIWs)-induced wind stress perturbations in the Pacific Ocean among observations,ocean models,and coupled climate models
2
作者 Kai MA Chuanyu LIU +1 位作者 Junli XU Fan WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期1-23,共23页
The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the ... The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the atmosphere and ocean.However,an overlooked fact by previous studies is that the loosely defined“TIWs”actually consist of two modes,including the Yanai wave-based TIW on the equator(hereafter eTIW)and the Rossby wave-based TIW off the equator(hereafter vTIW).Hence,the individual feedbacks of the wind stress to the bimodal TIWs remain unexplored.In this study,individual coupling relationships are established for both eTIW and v TIW,including the relationship between the TIW-induced SST perturbations and two components of wind stress perturbations,and the relationship between the TIW-induced wind stress perturbation divergence(curl)and the downwind(crosswind)TIW-induced SST gradients.Results show that,due to different distributions of eTIW and vTIW,the coupling strength induced by the eTIW is stronger on the equator,and that by the vTIW is stronger off the equator.The results of any of eTIW and vTIW are higher than those of the loosely defined TIWs.We further investigated how well the coupling relationships remained in several widely recognized oceanic general circulation models and fully coupled climate models.However,the coupling relationships cannot be well represented in most numerical models.Finally,we confirmed that higher resolution usually corresponds to more accurate simulation.Therefore,the coupling models established in this study are complementary to previous research and can be used to refine the oceanic and coupled climate models. 展开更多
关键词 bimodal tropical instability waves mesoscale air-sea interaction coupled models Yanai wave
下载PDF
An internal ballistic model of electromagnetic railgun based on PFN coupled with multi-physical field and experimental validation
3
作者 Benfeng Gu Haiyuan Li Baoming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期254-261,共8页
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime... To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed. 展开更多
关键词 Internal ballistic modeling Electromagnetic rail gun Multi-physics field coupling Experimental validation PFN
下载PDF
Different El Niño Flavors and Associated Atmospheric Teleconnections as Simulated in a Hybrid Coupled Model
4
作者 Junya HU Hongna WANG +1 位作者 Chuan GAO Rong-Hua ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期864-880,共17页
A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Ni... A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Niño flavors,namely the Eastern-Pacific(EP)and Central-Pacific(CP)types,and the associated global atmospheric teleconnections are examined in a 1000-yr control simulation of the HCMAGCM.The HCMAGCM indicates profoundly different characteristics among EP and CP El Niño events in terms of related oceanic and atmospheric variables in the tropical Pacific,including the amplitude and spatial patterns of sea surface temperature(SST),zonal wind stress,and precipitation anomalies.An SST budget analysis indicates that the thermocline feedback and zonal advective feedback dominantly contribute to the growth of EP and CP El Niño events,respectively.Corresponding to the shifts in the tropical rainfall and deep convection during EP and CP El Niño events,the model also reproduces the differences in the extratropical atmospheric responses during the boreal winter.In particular,the EP El Niño tends to be dominant in exciting a poleward wave train pattern to the Northern Hemisphere,while the CP El Niño tends to preferably produce a wave train similar to the Pacific North American(PNA)pattern.As a result,different climatic impacts exist in North American regions,with a warm-north and cold-south pattern during an EP El Niño and a warm-northeast and cold-southwest pattern during a CP El Niño,respectively.This modeling result highlights the importance of internal natural processes within the tropical Pacific as they relate to the genesis of ENSO diversity because the active ocean–atmosphere coupling is allowed only in the tropical Pacific within the framework of the HCMAGCM. 展开更多
关键词 hybrid coupled model tropical Pacific Ocean global atmosphere Eastern/Central-Pacific El Niño atmospheric teleconnections
下载PDF
Hydrologic Response to Future Climate Change in the Dulong-Irra-waddy River Basin Based on Coupled Model Intercomparison Project 6
5
作者 XU Ziyue MA Kai +1 位作者 YUAN Xu HE Daming 《Chinese Geographical Science》 SCIE CSCD 2024年第2期294-310,共17页
Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role... Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers. 展开更多
关键词 climate change hydrologic response coupled model Intercomparison Project 6(CMIP6) MIKE SHE(Système Hydrologique Europeén) Dulong-Irrawaddy River Basin
下载PDF
Prediction of Sedimentary Microfacies Distribution by Coupling Stochastic Modeling Method in Oil and Gas Energy Resource Exploitation
6
作者 Huan Wang Yingwei Di Yunfei Feng 《Energy and Power Engineering》 CAS 2023年第3期180-189,共10页
In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was pr... In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was proposed, breaking the tradition that different sedimentary microfacies used the same modeling method in the past. Because different sedimentary microfacies have different distribution characteristics and geometric shapes, it is more accurate to select different simulation methods for prediction. In this paper, the coupling modeling method was to establish the distribution of sedimentary microfacies with simple geometry through the point indicating process simulation, and then predict the microfacies with complex spatial distribution through the sequential indicator simulation method. Taking the DC block of Bohai basin as an example, a high-precision reservoir sedimentary microfacies model was established by the above coupling modeling method, and the model verification results showed that the sedimentary microfacies model had a high consistency with the underground. The coupling microfacies modeling method had higher accuracy and reliability than the traditional modeling method, which provided a new idea for the prediction of sedimentary microfacies. 展开更多
关键词 coupling modeling Oil and Gas Energy Resource Sedimentary Microfacies Seological model Reservoir Prediction
下载PDF
Study on damage-stress loss coupling model of rock and prestressed anchor cable in dry-wet environment
7
作者 Yu Zhao Huasu Wang +3 位作者 Jing Bi Zhijun Wu Chaolin Wang Jiabao Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第12期1451-1467,共17页
The loss of anchoring force is one of the problems to be solved urgently.The anchorage loss is a key factor causing the failure of anchoring engineering,so it is crucial to study the time-dependent variation of anchor... The loss of anchoring force is one of the problems to be solved urgently.The anchorage loss is a key factor causing the failure of anchoring engineering,so it is crucial to study the time-dependent variation of anchoring force.Alternating dry and wet(D-W)conditions have a significant effect on deformation of rock.The anchoring system is composed of anchoring components and rock mass,and thus rock deformation has a significant impact on the loss of anchoring force.Quantifying rock deformation under the effects of D-W cycles is a prerequisite to understanding the factors that influence loss of anchoring force in anchor bolts.In this study,we designed an anchoring device that enabled real-time monitoring of the variation in strain during D-W periods and rock testing.Nuclear magnetic resonance(NMR)measurements showed that under D-W conditions,the increment in porosity was smaller for prestressed rock than unstressed rock.The trends of prestress loss and strain variation are consistent,which can be divided into three characteristic intervals:rapid attenuation stage,slow attenuation stage and relatively stable stage.At the same stress level,the rate of stress loss and strain for the soaking specimen was the highest,while that of the dried specimen was the lowest.In the same D-W cycling conditions,the greater the prestress,the smaller the strain loss rate of the rock,especially under soaking conditions.The characteristics of pore structure and physical mechanical parameters indicated that prestress could effectively suppress damage caused by erosion related to D-W cycles.The study reveals the fluctuation behavior of rock strain and prestress loss under D-W conditions,providing a reference for effectively controlling anchoring loss and ideas for inventing new anchoring components. 展开更多
关键词 D-W cycles Anchoring force loss coupled model Pore structure Prestressed device
下载PDF
Multi-dimensional Simulation of Phase Change by a 0D-2D Model Coupling via Stefan Condition
8
作者 Adrien Drouillet Romain Le Tellier +2 位作者 Raphaël Loubère Mathieu Peybernes Louis Viot 《Communications on Applied Mathematics and Computation》 2023年第2期853-884,共32页
Considering phase changes associated with a high-temperature molten material cooled down from the outside,this work presents an improvement of the modelling and the numerical simulation of such processes for an applic... Considering phase changes associated with a high-temperature molten material cooled down from the outside,this work presents an improvement of the modelling and the numerical simulation of such processes for an application pertaining to the safety of light water nuclear reactors.Postulating a core meltdown accident,the behaviour of the core melt(aka corium)into a steel vessel is of tremendous importance when evaluating the vessel integrity.Evaluating correctly the heat fluxes requires the numerical simulation of the interaction between the liquid material and its solid counterpart which forms during the solidification process,but also may melt back.To simulate this configuration,encoun-tered in various industrial applications,one considers a bi-phase model constituted by a liquid phase in contact and interaction with its solid phase.The liquid phase may solidify in presence of low energetic source,while the solid phase may melt due to an intense heat flux from the high-temperature liquid.In the frame of the in-house legacy code,several simplifying assumptions(0D multi-layer discretization,instantaneous heat transfer via a quadratic temperature profile in solids)are made for the modelling of such phase changes.In the present work,these shortcomings are illustrated and further overcome by solving a 2D heat conduction model in the solid by a mixed Raviart-Thomas finite element method coupled to the liquid phase due to heat and mass exchanges through Stefan condition.The liquid phase is modeled with a 0D multi-layer approach.The 0D-liquid and 2D-solid mod-els are coupled by a Stefan like phase change interface model.Several sanity checks are performed to assess the validity of the approach on 1D and 2D academical configurations for which exact or reference solutions are available.Then more advanced situations(genu-ine multi-dimensional phase changes and an"industrial-like scenario")are simulated to verify the appropriate behavior of the obtained coupled simulation scheme. 展开更多
关键词 Simulation of phase change FUSION SOLIDIFICATION 0D multi-layer model 2D heat conduction model model coupling
下载PDF
Simulation study of supercritical carbon dioxide jet fracturing for carbonate geothermal reservoir based on fluid-thermo-mechanical coupling model
9
作者 Jian-Xiang Chen Rui-Yue Yang +4 位作者 Zhong-Wei Huang Xiao-Guang Wu Shi-Kun Zhang Hai-Zhu Wang Feng Ma 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1750-1767,共18页
Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon di... Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon dioxide(SC-CO_(2))jet fracturing is expected to efficiently stimulate the carbonate geothermal reservoirs and achieve the storage of CO_(2) simultaneously.In this paper,we established a transient seepage and fluid-thermo-mechanical coupled model to analyze the impact performance of sc-CO_(2) jet fracturing.The mesh-based parallel code coupling interface was employed to couple the fluid and solid domains by exchanging the data through the mesh interface.The physical properties change of sC-CO_(2) with temperature were considered in the numerical model.Results showed that SC-CO_(2) jet frac-turing is superior to water-jet fracturing with respect to jetting velocity,particle trajectory and pene-trability.Besides,stress distribution on the carbonate rock showed that the tensile and shear failure would more easily occur by SC-CO_(2) jet than that by water jet.Moreover,pressure and temperature control the jet field and seepage field of sC-CO_(2) simultaneously.Increasing the jet temperature can effectively enhance the impingement effect and seepage process by decreasing the viscosity and density of SC-CO_(2).The key findings are expected to provide a theoretical basis and design reference for applying SC-CO_(2) jet fracturing in carbonate geothermal reservoirs. 展开更多
关键词 CARBONATE Carbon capture utilization and storage(CCUS) Jet fracturing coupled model Geothermal reservoir
下载PDF
Software Coupling and Cohesion Model for Measuring the Quality of Software Components
10
作者 Zakarya Abdullah Alzamil 《Computers, Materials & Continua》 SCIE EI 2023年第12期3139-3161,共23页
Measuring software quality requires software engineers to understand the system’s quality attributes and their measurements.The quality attribute is a qualitative property;however,the quantitative feature is needed f... Measuring software quality requires software engineers to understand the system’s quality attributes and their measurements.The quality attribute is a qualitative property;however,the quantitative feature is needed for software measurement,which is not considered during the development of most software systems.Many research studies have investigated different approaches for measuring software quality,but with no practical approaches to quantify and measure quality attributes.This paper proposes a software quality measurement model,based on a software interconnection model,to measure the quality of software components and the overall quality of the software system.Unlike most of the existing approaches,the proposed approach can be applied at the early stages of software development,to different architectural design models,and at different levels of system decomposition.This article introduces a software measurement model that uses a heuristic normalization of the software’s internal quality attributes,i.e.,coupling and cohesion,for software quality measurement.In this model,the quality of a software component is measured based on its internal strength and the coupling it exhibits with other component(s).The proposed model has been experimented with nine software engineering teams that have agreed to participate in the experiment during the development of their different software systems.The experiments have shown that coupling reduces the internal strength of the coupled components by the amount of coupling they exhibit,which degrades their quality and the overall quality of the software system.The introduced model can help in understanding the quality of software design.In addition,it identifies the locations in software design that exhibit unnecessary couplings that degrade the quality of the software systems,which can be eliminated. 展开更多
关键词 Software coupling measurement software cohesion measurement quality attributes measurement software quality measurement software quality modeling
下载PDF
A rigid-flexible coupling finite element model of coupler for analyzing train instability behavior during collision
11
作者 Jingke Zhang Tao Zhu +5 位作者 Bing Yang Xiaorui Wang Shoune Xiao Guangwu Yang Yanwen Liu Quanwei Che 《Railway Engineering Science》 2023年第4期325-339,共15页
Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of ... Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling. 展开更多
关键词 Intermediate coupler Rigid-flexible coupling finite element model Design buckling load Actual buckling load Lateral buckling instability
下载PDF
An Empirical Study on the Coupling and Coordination of Health Investment, Resident Health and Economic Growth in Sichuan Province —Based on a Modified Coupling Model
12
作者 Long Qian Fei Chen 《Open Journal of Applied Sciences》 CAS 2023年第3期355-365,共11页
We should calculate the coupling degree of medical investment, resident health and economic growth in Sichuan Province, and make clear the coordinated development of the aforementioned three factors. In that, the gove... We should calculate the coupling degree of medical investment, resident health and economic growth in Sichuan Province, and make clear the coordinated development of the aforementioned three factors. In that, the government was able to formulate policies that feature the positive interaction and coordinated development of regional medical investment, health and economy. Methods on index system for the evaluation of health investment, resident health and economic growth were constructed, and the coupling and coordination degree of the three systems were empirically studied based on the entropy weight method, the coupling coordination model and the gray correlation method. From the perspective of time series, the overall coupling and coordination level of Sichuan Province is relatively low, and the comprehensive development level of health investment and economic growth system has lagged behind the resident health system;from the perspective of spatial distribution characteristics, in 2019, the coordinated development level of health investment resident health and economic growth coupling in western Sichuan, southern Sichuan, northern Sichuan, eastern Sichuan and northern Sichuan is in the primary coordination stage, but there is a lag in the development of the health investment system between western Sichuan and southern Sichuan, and there is a lag in the development of the economic growth system between northern Sichuan and eastern Sichuan. From the analysis of gray correlation degree, the main correlation factors are diverse. All in all, the overall coordination level of health investment, resident health and economic growth in Sichuan Province is relatively low, and in order to achieve its coordinated development, it is necessary to narrow regional differences, formulate coordinated development strategies according to local conditions, and improve the overall coordination level. 展开更多
关键词 Health Investment Resident Health Economic Growth coupling model
下载PDF
Shear behavior of intact granite under thermo-mechanical coupling and three-dimensional morphology of shear-formed fractures 被引量:1
13
作者 Bing Chen Baotang Shen Haiyang Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期523-537,共15页
The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear... The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified. 展开更多
关键词 Thermo-mechanical(TM)coupling Peak shear strength Three-dimensional(3D)morphological characterization Failure mode Quadrangular pyramid model
下载PDF
A Numerical Study on Effects of Land-Surface Heterogeneity from' Combined Approach' on Atmospheric ProcessPart II: Coupling-Model Simulations 被引量:5
14
作者 曾新民 赵鸣 苏炳凯 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第2期241-255,共15页
Two land surface schemes, one the standard Biosphere / Atmosphere Transfer Scheme Version ie (BOZ) and the other B1Z based on B0Z and heterogeneously-treated by’ combined approach’ , were co "pled to the meso-s... Two land surface schemes, one the standard Biosphere / Atmosphere Transfer Scheme Version ie (BOZ) and the other B1Z based on B0Z and heterogeneously-treated by’ combined approach’ , were co "pled to the meso-scale model MM4, respectively. Through the calculations of equations from the companion paper, parameters representing land surface heterogeneity and suitable for the coupling models were found out. Three cases were simulated for heavy rainfalls during 36 hours, and the sensitivity of short-term weather modeling to the land surface heterogeneity was tested. Through the analysis of the simulations of the three heavy rainfalls, it was demonstrated that BIZ, compared with BOZ, could more realistically reflect the features of the land surface heterogeneity, therefore could more realistically reproduce the circulation and precipitation amount in the heavy rainfall processes of the three cases. This shows that even short-term weather is sensitive to the land surface heterogeneity, which is more obvious with time passing, and whose influence is more pronounced in the lower layer and gradually extends to the middle and upper layer. Through the analysis of these simulations with BlZ, it is suggested that the bulk effect of smaller-scale fluxes (i.e., the momentum, water vapor and sensible heat fluxes) near the s ig nificantly-heterogeneous land surface is to change the larger-scale (i.e., meso-scale) circulation, and then to influence the development of the low-level jets and precipitation. And also, the complexity of the land-atmosphere interaction was shown in these simulations. 展开更多
关键词 Combined approach LAND surface HETEROGENEITY coupling model Numerical experiment
下载PDF
Heat-fluid-solid coupling model for gas-bearing coal seam and numerical modeling on gas drainage promotion by heat injection 被引量:4
15
作者 Ruifu Yuan Chunling Chen +1 位作者 Xiao Wei Xiaojun Li 《International Journal of Coal Science & Technology》 EI 2019年第4期564-576,共13页
Improving the absorbed gas to active desorption and seepage and delaying gas drainage attenuation are considered as key methods for increasing drainage efficiency and gas output.According to the solid mechanics theory... Improving the absorbed gas to active desorption and seepage and delaying gas drainage attenuation are considered as key methods for increasing drainage efficiency and gas output.According to the solid mechanics theory,the nonlinear Darcy seepage theory and thermodynamics,the heat-fluid-solid coupling model for gassy coal has been improved.The numerical model was founded from the improved multi-field coupling model by COMSOL Multiphysics and gas drainage by borehole down the coal seam enhanced by heat injection was modelled.The results show that the heatfluid-solid model with adsorption effects for gassy coal was well simulated by the improved multi-field model.The mechanism of coal seam gas desorption seepage under the combined action of temperature,stress and adsorption can be well described.Gas desorption and seepage can be enhanced by heat injection into coal seams.The gas drainage rate was directly proportional to the temperature of injected heat in the scope of 30-150 ℃ and increasing in the whole modelleddrainage process (0-1000 d).The increased level was maximum in the initial drainage time and decreasing gradually along with drainage time.The increasing ratio of drainage rate was maximum when the temperature raised from 30 to 60 ℃.Although the drainage rate would increase along with increasing temperature,when exceeding 60 ℃,the increasing ratio of drainage rate with rising temperature would decrease.Gas drainage promotion was more effective in coal seams with lower permeability than with higher permeability.The coal seam temperature in a 5 m distance surrounding the heat injection borehole would rise to around 60 ℃ in 3 months.That was much less than the time of gas drainage in the coal mines in sites with low permeability coal seams.Therefore,it is valuable and feasible to inject heat into coal seams to promote gas drainage,and this has strong feasibility for coal seams with low permeability which are widespread in China. 展开更多
关键词 Gassy coal Heat-fluid-solid coupling model Heat INJECTION GAS extraction Numerical modeling
下载PDF
Coupling of a Regional Climate Model with a Crop Development Model and Evaluation of the Coupled Model across China 被引量:1
16
作者 Jing ZOU Zhenghui XIE +4 位作者 Chesheng ZHAN Feng CHEN Peihua QIN Tong HU Jinbo XIE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第5期527-540,共14页
In this study, the CERES(Crop Estimation through Resource and Environment Synthesis) crop model was coupled with CLM3.5, the land module of the regional climate model RegCM4. The new coupled model was named RegCM4_CER... In this study, the CERES(Crop Estimation through Resource and Environment Synthesis) crop model was coupled with CLM3.5, the land module of the regional climate model RegCM4. The new coupled model was named RegCM4_CERES; and in this model, crop type was further divided into winter wheat, spring wheat, spring maize, summer maize, early rice, late rice,single rice, and other crop types based on each distribution fraction. The development of each crop sub-type was simulated by the corresponding crop model separately, with each planting and harvesting date. A simulation test using RegCM4_CERES was conducted across China from 1999 to 2008; a control test was also performed using the original RegCM4. Data on crop LAI(leaf area index), soil moisture at 10 cm depth, precipitation, and 2 m air temperature were collected to evaluate the performance of RegCM4_CERES. The evaluation provided comparison of single-station time series, regional distributions,seasonal variations, and statistical indices for RegCM4_CERES. The results revealed that the coupled model had an excellent ability to simulate the phonological changes and spatial variations in crops. The consideration of dynamic crop development in RegCM4_CERES corrected the wet bias of the original RegCM4 over North China and the cold bias over South China.However, the degree of improvement was minimal and the statistical indices for RegCM4_CERES were roughly the same as the original RegCM4. 展开更多
关键词 model EVALUATION model coupling CROP development model regional CLIMATE model CLIMATE modeling
下载PDF
Implicit scheme for integrating constitutive model of unsaturated soils with coupling hydraulic and mechanical behavior 被引量:4
17
作者 马田田 韦昌富 +1 位作者 陈盼 魏厚振 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第9期1129-1154,共26页
A constitutive model of unsaturated soils with coupling capillary hysteresis and skeleton deformation is developed and implemented in a fully coupled transient hydro-mechanical finite-element model(computer code U-DYS... A constitutive model of unsaturated soils with coupling capillary hysteresis and skeleton deformation is developed and implemented in a fully coupled transient hydro-mechanical finite-element model(computer code U-DYSAC2).The obtained results are compared with experimental results,showing that the proposed constitutive model can simulate the main mechanical and hydraulic behavior of unsaturated soils in a unified framework.The non-linearity of the soil-water characteristic relation is treated in a similar way of elastoplasticity.Two constitutive relations are integrated by an implicit return-mapping scheme similar to that developed for saturated soils.A consistent tangential modulus is derived to preserve the asymptotic rate of the quadratic convergence of Newton's iteration.Combined with the integration of the constitutive model,a complete finite-element formulation of coupling hydro-mechanical problems for unsaturated soils is presented.A number of practical problems with different given initial and boundary conditions are analyzed to illustrate the performance and capabilities of the finite-element model. 展开更多
关键词 unsaturated soil capillary hysteresis elastoplastic coupling constitutive model stress integration finite-element method
下载PDF
A COUPLING MODEL OF LEFT VENTRICLE AND ARTERIAL SYSTEM 被引量:1
18
作者 Liu Zhaorong Zhou Yongsheng(Department of Applied Mechanics,Fudan University) 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1989年第3期285-292,共8页
A simple left ventricular model and a systemic arterial modelofa tapered tube with eightbranches are used in this paper which are combined into a mathematical coupling model of heart and ar-terial system to study the ... A simple left ventricular model and a systemic arterial modelofa tapered tube with eightbranches are used in this paper which are combined into a mathematical coupling model of heart and ar-terial system to study the interaction of the heart and the arterial system. 展开更多
关键词 VENTRICULAR and VASCULAR coupling MATHEMATICAL model pulse wave AFTERLOAD
下载PDF
A COUPLING MODEL FOR TERRESTRIAL PROCESSES IN ARID AREAS AND ITS APPLICATION 被引量:1
19
作者 李家春 姚德良 +1 位作者 沈卫明 谢正桐 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1999年第1期1-11,共11页
In this paper, the importance of investigation on terrestrical processes in arid areas for mankind’s living environment protection and local economy development as well as its present state of the art are elucidated.... In this paper, the importance of investigation on terrestrical processes in arid areas for mankind’s living environment protection and local economy development as well as its present state of the art are elucidated. A coupling model, whichevaluates heat, mass, momentum and radiative fluxes in the SPAC system, is developed for simulating microclimate over plant and bore soil. Especially, it is focussed on the details of turbulence tracsfer. For illustration, numerical simulation of the water-heat exchange processes at Shapotou Observatory, CAS, Ninxia Province areconducted, and the computational results show that the laws of land-surface processesare rather typiical in the arid areas. 展开更多
关键词 coupling model land-atmosphere INTERACTION TURBULENT model
下载PDF
Assessment of earthquake-induced landslide hazard zoning using the physics-environmental coupled Model
20
作者 ZENG Ying ZHANG Ying-bin +4 位作者 LIU Jing XU Pei-yi ZHU Hui YU Hai-hong HE Yun-yong 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2644-2664,共21页
In order to prevent and mitigate disasters,it is crucial to immediately and properly assess the spatial distribution of landslide hazards in the earthquake-affected area.Currently,there are primarily two categories of... In order to prevent and mitigate disasters,it is crucial to immediately and properly assess the spatial distribution of landslide hazards in the earthquake-affected area.Currently,there are primarily two categories of assessment techniques:the physical mechanism-based method(PMBM),which considers the landslide dynamics and has the advantages of effectiveness and proactivity;the environmental factor-based method(EFBM),which integrates the environmental conditions and has high accuracy.In order to obtain the spatial distribution of landslide hazards in the affected area with near realtime and high accuracy,this study proposed to combine the PMBM based on Newmark method with EFBM to form Newmark-Information value model(N-IV),Newmark-Logic regression model(N-LR)and Newmark-Support Vector Machine model(N-SVM)for seismic landslide hazard assessment on the Ludian Mw 6.2 earthquake in Yunnan.The predicted spatial hazard distribution was compared with the actual cataloged landslide inventory,and frequency ratio(FR),and area under the curve(AUC)metrics were used to verify the model's plausibility,performance,and accuracy.According to the findings,the model's accuracy is ranked as follows:N-SVM>N-LR>N-IV>Newmark.With an AUC value of 0.937,the linked N-SVM was discovered to have the best performance.The research results indicate that the physics-environmental coupled model(PECM)exhibits accuracy gains of 46.406%(N-SVM),30.625%(N-LR),and 22.816%(N-IV)when compared to the conventional Newmark technique.It shows varied degrees of improvement from 2.577%to 12.446%when compared to the single EFBM.The study also uses the Ms 6.8 Luding earthquake to evaluate the model,showcasing its trustworthy in forecasting power and steady generalization.Since the suggested PECM in this study can adapt to complicated earthquake-induced landslides situations,it aims to serve as a reference for future research in a similar field,as well as to help with emergency planning and response in earthquakeprone regions with landslides. 展开更多
关键词 Earthquake-induced landslides Newmark method coupled model Ludian earthquake Landslide distribution
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部