期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Revealing sodium storage mechanism of hard carbon anodes through in-situ investigation of mechano-electrochemical coupling behavior
1
作者 Mei Yang Zhenya Luo +5 位作者 Xiao Wang Xinxin Cao Weiguo Mao Yong Pan Cuiying Dai Junan Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期227-236,I0006,共11页
Hard carbon(HC)is considered a promising anode material for sodium-ion batteries due to its relatively low price and high specific capacity.However,HC still suffers from unclear reaction mechanisms and unsatisfactory ... Hard carbon(HC)is considered a promising anode material for sodium-ion batteries due to its relatively low price and high specific capacity.However,HC still suffers from unclear reaction mechanisms and unsatisfactory cycling stability.The study of mechano-electrochemical coupling behavior by in-situ measurement techniques is expected to understand the sodium storage and degradation mechanisms.In this paper,the strain and stress evolution of HC anodes at different sodiation/desodiation depths and cycles are investigated by combining electrochemical methods,digital image correlation,and theoretical equations.The observation by monitoring the in-situ strain evolution during the redox process supports the“adsorption-intercalation/filling”mechanism in reduction and the“de-filling/de-intercalation-deso rption”mechanism in oxidation.Further studies have demonstrated that the strain and stress of the electrode show periodic changes accompanied by a continuous accumulation of residual stress during cycles,explaining the capacity degradation mechanism of HC from a mechanical perspective.In addition,when the higher current density is applied,the electrodes experience greater strain and stress associated with the Na+insertion rate.This work clarifies the Na-storage mechanism and the mechano-electrochemical coupling mechanism of HC anodes by in-situ strain measurement,which helps optimize and design the anode materials of sodium-ion batteries from the perspective of interface microstructure and multi-field coupling,such as in situ integrated interface structure design. 展开更多
关键词 Hard carbon Sodium storage In-situ strain measurement Digital image correlation mechano-electrochemical coupling
下载PDF
Modeling of the mechano-electrochemical effect at corrosion defect with varied inclinations on oil/gas pipelines 被引量:1
2
作者 Zhu-Wu Zhang Jin-Chang Wang +1 位作者 Jiu-Hong Zhang Y.Frank Cheng 《Petroleum Science》 SCIE CAS CSCD 2021年第5期1520-1529,共10页
A 3-dimensional finite element model was built to determine the effect of inclination angle of a corro sion defect on local mechano-electrochemical(M-E)effect in a simulated soil solution.Because of the high effect of... A 3-dimensional finite element model was built to determine the effect of inclination angle of a corro sion defect on local mechano-electrochemical(M-E)effect in a simulated soil solution.Because of the high effect of the defect inclination angle on the M-E effect,when the inclination angle is 0°(i.e.,the primary axis of the defect parallel to the longitudinal direction of the pipe),the greate st stress concentration level at the defect can be observed,which is associated with the lowest corrosion potential,the greatest anodic current density and the most serious accelerated localized corrosion.When the inclination angle is 90°,the stress concentration level reduces and the corrosion potential becomes less negative,accompanying with the decreased anodic/cathodic current densities.Besides,when the ratio(r_(ca))of the primary axial length of the defect to its secondary axial length is 1,the defect inclination does not affect the stress and the electrochemical corrosion rate at the defect.With the increase of r_(ca),the effect of the defect inclination angle is more apparent. 展开更多
关键词 Pipelines Corrosion defect assessment mechano-electrochemical effect Finite element model
下载PDF
Bioinspired mechanically interlocking holey graphene@SiO_(2)anode 被引量:2
3
作者 Fei Wang Xiaobin Liao +3 位作者 Haoyu Wang Yan Zhao Jian Mao Donald G.Truhlar 《Interdisciplinary Materials》 2022年第4期517-525,共9页
Mechanically interlocking structures that can enhance adhesion at the interface and regulate the stress distribution have been widely observed in biological systems.Inspired by the biological structures in the wings o... Mechanically interlocking structures that can enhance adhesion at the interface and regulate the stress distribution have been widely observed in biological systems.Inspired by the biological structures in the wings of beetles,we synthesized a holey graphene@SiO_(2)anode with strong mechanical interlocking,characterized it electrochemically,and explained its performance by finite element analysis and density functional calculations.The mechanically interlocking structure enhances lithium-ion(Li^(+))storage by transmitting the strain from SiO_(2)to the holey graphene and by a mechano-electrochemical coupling effect.The interlocking fit hinders the abscission of SiO_(2)and the distinctive structure reduces the stress and strain of SiO_(2)during(de)lithiation.The positive mechano-electrochemical coupling effect preserves the amount of electrochemically active phase(LixSi)during cycles and facilitates Li+diffusion.Therefore,the capacity shows only a slight attenuation after 8000 cycles(cycling stability),and the specific capacity is~1200 mA h g^(−1)at 5 A/g(rate-performance).This study furnishes a novel way to design high-performance Li^(+)/Na+/K^(+)/Al3^(+)anodes with large volume expansion. 展开更多
关键词 holey graphene mechanically interlocking mechano-electrochemical coupling effect simulation SiO_(2) anode
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部