The differences of rock mechanical properties were analyzed based on triaxial compression test in low permeability reservoirs of the Bonan Oilfield. Through the analysis of reservoir mechanics, the influence mechanism...The differences of rock mechanical properties were analyzed based on triaxial compression test in low permeability reservoirs of the Bonan Oilfield. Through the analysis of reservoir mechanics, the influence mechanisms of different mechanical properties of rocks on reservoir in-situ stress were studied. By means of stress ellipse and finite element simulation, the influence rules of different mechanical properties of rocks on in-situ stress field were discussed. For the low permeability reservoirs of the Bonan Oilfield, the coarser rock has a larger Young’s modulus value and a lower Poisson’s ratio. The rock mechanical parameters and stress-strain relationship of sandstone facies and mudstone facies are different. Different rocks have different mechanical properties, which cause extra stress at the lithological contact interface, and the existence of extra stress affects the reservoir in-situ stress. Without considering the influence of structural features on the in-situ stress field, the reservoir in-situ stress is controlled by the magnitude of extra stress and the angle between lithological contact surface and boundary stress.展开更多
To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for f...To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for fracture-matrix system was established taking the Chang 8 reservoir in southern Yanchang Oilfield as a research target. Key factors for the imbibition effect were obtained, an imbibition's rate expression was obtained, a model considering the double effects of imbibition-displacement was built and optimal injection and production parameters for the research area were obtained as well. The results show that an optimum displacement rate that maximizes the oil displacement efficiency exists in the water displacing oil process, and the optimal displacing rate becomes smaller as the permeability decreases. The imbibition displacement efficiency increases as the reservoir quality index and water wettability index of rock become bigger. But the larger the initial water saturation or oil-water viscosity ratio is, the smaller the imbibition displacement efficiency is. The optimal injection-production ratio for the Chang 8 reservoir of southern Yanchang Oilfield is 0.95, and the predicted recovery is 17.2% when the water cut is 95%, it is 2.9% higher than the recovery of conventional injection-production ratio 1.2. By using the moderate water injection technique based on the double effects of imbibition-displacement mechanism, the water injection development effect for the ultra-low permeability fractured reservoirs can be improved significantly.展开更多
In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,second...In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d.展开更多
Based on the impact of the stress perturbation effect created by simultaneous propagation of multiple fractures in the process of simultaneous hydraulic fracturing, a thorough research on the mechanism and adaptation ...Based on the impact of the stress perturbation effect created by simultaneous propagation of multiple fractures in the process of simultaneous hydraulic fracturing, a thorough research on the mechanism and adaptation of simultaneous fracturing of double horizontal wells in ultra-low permeability sandstone reservoirs was conducted by taking two adjacent horizontal wells(well Yangping-1 and well Yangping-2 located in Longdong area of China Changqing Oilfield) as field test wells. And simultaneous fracturing optimal design of two adjacent horizontal wells was finished and employed in field test. Micro-seismic monitoring analysis of fracture propagation during the stimulation treatment shows that hydraulic fractures present a pattern of complicated network expansion, and the well test data after fracturing show that the daily production of well Yangping-1 and well Yangping-2 reach105.8 t/d and 87.6 t/d, which are approximately 9.4 times and 7.8 times the daily production of a fractured vertical well in the same area, respectively. Field test reflects that simultaneous hydraulic fracturing of two adjacent horizontal wells can enlarge the expansion area of hydraulic fractures to obtain a lager drainage area and realize the full stimulation of ultra-low permeability sandstone reservoirs in China Changqing oilfield. Therefore, simultaneous fracturing of two adjacent horizontal wells provides a good opportunity in stimulation techniques for the efficient development of ultra-low permeability reservoirs in China Changqing oilfield,and it has great popularization value and can provide a new avenue for the application of stimulation techniques in ultra-low permeability reservoirs in China.展开更多
With the development of oilfield exploration and mining, the research on continental oil and gas reservoirs has been gradually refined, and the exploration target of offshore reservoir has also entered the hot studyst...With the development of oilfield exploration and mining, the research on continental oil and gas reservoirs has been gradually refined, and the exploration target of offshore reservoir has also entered the hot studystage of small sand bodies, small fault blocks, complex structures, low permeability and various heterogeneous geological bodies. Thus, the marine oil and gas development will inevitably enter thecomplicated reservoir stage;meanwhile the corresponding assessment technologies, engineering measures andexploration method should be designed delicately. Studying on hydraulic flow unit of low permeability reservoir of offshore oilfield has practical significance for connectivity degree and remaining oil distribution. An integrated method which contains the data mining and flow unit identification part was used on the flow unit prediction of low permeability reservoir;the predicted results?were compared with mature commercial system results for verifying its application. This strategy is successfully applied to increase the accuracy by choosing the outstanding prediction result. Excellent computing system could provide more accurate geological information for reservoir characterization.展开更多
Based on the measurement mechanism of mobility in pressure measurement while drilling, through analyzing a large number of mobility data, it is found that under the condition of water-based mud drilling, the product o...Based on the measurement mechanism of mobility in pressure measurement while drilling, through analyzing a large number of mobility data, it is found that under the condition of water-based mud drilling, the product of mobility from pressure measurement while drilling and the viscosity of mud filtrate is infinitely close to the water phase permeability under the residual oil in relative permeability experiment. Based on this, a method converting the mobility from pressure measurement while drilling to core permeability is proposed, and the permeability based on Timur formula has been established. Application of this method in Penglai 19-9 oilfield of Bohai Sea shows:(1) Compared with the permeability calculated by the model of adjacent oilfields, the permeability calculated by this model is more consistent with the permeability calculated by core analysis.(2) Based on the new model, the correlation between the calculated mobility of well logging and the actual drilling specific productivity index bas been established. Compared with the relationship established by using the permeability model of an adjacent oilfield, the correlation of the new model is better.(3) Productivity of four directional wells was predicted, and the prediction results are in good agreement with the actual production after drilling.展开更多
Experiments of electrical responses of waterflooded layers were carried out on porous,fractured,porous-fractured and composite cores taken from carbonate reservoirs in the Zananor Oilfield,Kazakhstan to find out the e...Experiments of electrical responses of waterflooded layers were carried out on porous,fractured,porous-fractured and composite cores taken from carbonate reservoirs in the Zananor Oilfield,Kazakhstan to find out the effects of injected water salinity on electrical responses of carbonate reservoirs.On the basis of the experimental results and the mathematical model of calculating oil-water relative permeability of porous reservoirs by resistivity and the relative permeability model of two-phase flow in fractured reservoirs,the classification standards of water-flooded layers suitable for carbonate reservoirs with complex pore structure were established.The results show that the salinity of injected water is the main factor affecting the resistivity of carbonate reservoir.When low salinity water(fresh water)is injected,the relationship curve between resistivity and water saturation is U-shaped.When high salinity water(salt water)is injected,the curve is L-shaped.The classification criteria of water-flooded layers for carbonate reservoirs are as follows:(1)In porous reservoirs,the water cut(fw)is less than or equal to 5%in oil layers,5%–20%in weak water-flooded layers,20%–50%in moderately water-flooded layers,and greater than 50%in strong water-flooded layers.(2)For fractured,porous-fractured and composite reservoirs,the oil layers,weakly water-flooded layers,moderately water-flooded layers,and severely water-flooded layers have a water content of less than or equal to 5%,5%and 10%,10%to 50%,and larger than 50%respectively.展开更多
通过实验室模拟与现场应用分析,详细考察了弱凝胶体系的性能以及在油田中的实际应用效果。实验结果显示,弱凝胶体系的成胶时间从20℃的115.2 min显著减少至70℃的14.9 min,黏度从1560.5 m Pa·s降至1047.2 m Pa·s,体现了温度...通过实验室模拟与现场应用分析,详细考察了弱凝胶体系的性能以及在油田中的实际应用效果。实验结果显示,弱凝胶体系的成胶时间从20℃的115.2 min显著减少至70℃的14.9 min,黏度从1560.5 m Pa·s降至1047.2 m Pa·s,体现了温度提高加速化学交联反应的效果。在老化稳定性实验中,凝胶黏度在室温条件下经过3个月从初始的1200 m Pa·s缓慢降至1149 m Pa·s,而在80℃的高温条件下,从1013 m Pa·s降至970 m Pa·s,表明温度的升高加速了老化过程,但整体上凝胶展示了良好的稳定性。剪切稳定性测试中,凝胶黏度从500 r·min^(-1)的1198 m Pa·s降至5000 r·min^(-1)的987 m Pa·s,显示出良好的剪切稳定性。大洼油田采用弱凝胶调驱技术后,油井的日产油量平均提升了50%,同时减少了水窜现象,优化了油水分层,显著提高了油田的整体采收效率。展开更多
为了解决高压欠注水井降压增注中面临的难题,以定边油田低渗透油藏的主力区块为研究对象,研究该区块的高压注水井在线酸化增注技术。利用单步法酸液体系可以抑制二次、三次沉淀物和溶解堵塞物的特性,设计在线单步法酸化智能增注系统,通...为了解决高压欠注水井降压增注中面临的难题,以定边油田低渗透油藏的主力区块为研究对象,研究该区块的高压注水井在线酸化增注技术。利用单步法酸液体系可以抑制二次、三次沉淀物和溶解堵塞物的特性,设计在线单步法酸化智能增注系统,通过“监控表皮系数变化情况”判断“是否对目的层段持续酸化”,确保最佳酸化效果。室内实验和现场试验结果表明:G-智能复合酸对氟化钠和氟硅酸盐产生二次沉淀的抑制性最好,单步法酸液体系选择G-智能复合酸可以更好地抑制酸反应时二次沉淀物的产生;堵塞物在酸液+助渗透剂剂T影响下的溶蚀率在73.9%~79%之间,堵塞物溶蚀率高于仅加入酸液的,单步法酸液体系选择酸液+助渗透剂可提升堵塞物溶蚀率;与只注入助渗透剂T相比,注入G-智能复合酸+助渗透剂T的高压注水井的油压下降1.0~3.4 MPa,日注水量增加6.1~9.8 m 3,该技术优势显著。展开更多
基金Supported by the China National Major Demonstration Project(2017ZX05072)
文摘The differences of rock mechanical properties were analyzed based on triaxial compression test in low permeability reservoirs of the Bonan Oilfield. Through the analysis of reservoir mechanics, the influence mechanisms of different mechanical properties of rocks on reservoir in-situ stress were studied. By means of stress ellipse and finite element simulation, the influence rules of different mechanical properties of rocks on in-situ stress field were discussed. For the low permeability reservoirs of the Bonan Oilfield, the coarser rock has a larger Young’s modulus value and a lower Poisson’s ratio. The rock mechanical parameters and stress-strain relationship of sandstone facies and mudstone facies are different. Different rocks have different mechanical properties, which cause extra stress at the lithological contact interface, and the existence of extra stress affects the reservoir in-situ stress. Without considering the influence of structural features on the in-situ stress field, the reservoir in-situ stress is controlled by the magnitude of extra stress and the angle between lithological contact surface and boundary stress.
基金Supported by Science Coordination New Project(2016KTCL01-12)
文摘To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for fracture-matrix system was established taking the Chang 8 reservoir in southern Yanchang Oilfield as a research target. Key factors for the imbibition effect were obtained, an imbibition's rate expression was obtained, a model considering the double effects of imbibition-displacement was built and optimal injection and production parameters for the research area were obtained as well. The results show that an optimum displacement rate that maximizes the oil displacement efficiency exists in the water displacing oil process, and the optimal displacing rate becomes smaller as the permeability decreases. The imbibition displacement efficiency increases as the reservoir quality index and water wettability index of rock become bigger. But the larger the initial water saturation or oil-water viscosity ratio is, the smaller the imbibition displacement efficiency is. The optimal injection-production ratio for the Chang 8 reservoir of southern Yanchang Oilfield is 0.95, and the predicted recovery is 17.2% when the water cut is 95%, it is 2.9% higher than the recovery of conventional injection-production ratio 1.2. By using the moderate water injection technique based on the double effects of imbibition-displacement mechanism, the water injection development effect for the ultra-low permeability fractured reservoirs can be improved significantly.
基金funded by National Natural Science Foundation of China (grant number 42207083)the project of SINOREC (No.322052)
文摘In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d.
基金Project(51404204)supported by the National Natural Science Foundation of ChinaProject(20135121120002)supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2014QHZ005)supported by Scientific Research Starting Projecting of SWPU,China
文摘Based on the impact of the stress perturbation effect created by simultaneous propagation of multiple fractures in the process of simultaneous hydraulic fracturing, a thorough research on the mechanism and adaptation of simultaneous fracturing of double horizontal wells in ultra-low permeability sandstone reservoirs was conducted by taking two adjacent horizontal wells(well Yangping-1 and well Yangping-2 located in Longdong area of China Changqing Oilfield) as field test wells. And simultaneous fracturing optimal design of two adjacent horizontal wells was finished and employed in field test. Micro-seismic monitoring analysis of fracture propagation during the stimulation treatment shows that hydraulic fractures present a pattern of complicated network expansion, and the well test data after fracturing show that the daily production of well Yangping-1 and well Yangping-2 reach105.8 t/d and 87.6 t/d, which are approximately 9.4 times and 7.8 times the daily production of a fractured vertical well in the same area, respectively. Field test reflects that simultaneous hydraulic fracturing of two adjacent horizontal wells can enlarge the expansion area of hydraulic fractures to obtain a lager drainage area and realize the full stimulation of ultra-low permeability sandstone reservoirs in China Changqing oilfield. Therefore, simultaneous fracturing of two adjacent horizontal wells provides a good opportunity in stimulation techniques for the efficient development of ultra-low permeability reservoirs in China Changqing oilfield,and it has great popularization value and can provide a new avenue for the application of stimulation techniques in ultra-low permeability reservoirs in China.
文摘With the development of oilfield exploration and mining, the research on continental oil and gas reservoirs has been gradually refined, and the exploration target of offshore reservoir has also entered the hot studystage of small sand bodies, small fault blocks, complex structures, low permeability and various heterogeneous geological bodies. Thus, the marine oil and gas development will inevitably enter thecomplicated reservoir stage;meanwhile the corresponding assessment technologies, engineering measures andexploration method should be designed delicately. Studying on hydraulic flow unit of low permeability reservoir of offshore oilfield has practical significance for connectivity degree and remaining oil distribution. An integrated method which contains the data mining and flow unit identification part was used on the flow unit prediction of low permeability reservoir;the predicted results?were compared with mature commercial system results for verifying its application. This strategy is successfully applied to increase the accuracy by choosing the outstanding prediction result. Excellent computing system could provide more accurate geological information for reservoir characterization.
基金Supported by the China National Science and Technology Major Project(2016ZX058-001)the CNOOC Scientific and Technological Project(CNOOC-KJ135-ZDXM36-TJ).
文摘Based on the measurement mechanism of mobility in pressure measurement while drilling, through analyzing a large number of mobility data, it is found that under the condition of water-based mud drilling, the product of mobility from pressure measurement while drilling and the viscosity of mud filtrate is infinitely close to the water phase permeability under the residual oil in relative permeability experiment. Based on this, a method converting the mobility from pressure measurement while drilling to core permeability is proposed, and the permeability based on Timur formula has been established. Application of this method in Penglai 19-9 oilfield of Bohai Sea shows:(1) Compared with the permeability calculated by the model of adjacent oilfields, the permeability calculated by this model is more consistent with the permeability calculated by core analysis.(2) Based on the new model, the correlation between the calculated mobility of well logging and the actual drilling specific productivity index bas been established. Compared with the relationship established by using the permeability model of an adjacent oilfield, the correlation of the new model is better.(3) Productivity of four directional wells was predicted, and the prediction results are in good agreement with the actual production after drilling.
基金Supported by the China National Major Science and Technology Project(2017ZX05030-002)the Natural Science Basic Research Plan in Shaanxi Province of China(2020JQ-747)the Fundamental Research Funds for the Central Universities(300102260107)
文摘Experiments of electrical responses of waterflooded layers were carried out on porous,fractured,porous-fractured and composite cores taken from carbonate reservoirs in the Zananor Oilfield,Kazakhstan to find out the effects of injected water salinity on electrical responses of carbonate reservoirs.On the basis of the experimental results and the mathematical model of calculating oil-water relative permeability of porous reservoirs by resistivity and the relative permeability model of two-phase flow in fractured reservoirs,the classification standards of water-flooded layers suitable for carbonate reservoirs with complex pore structure were established.The results show that the salinity of injected water is the main factor affecting the resistivity of carbonate reservoir.When low salinity water(fresh water)is injected,the relationship curve between resistivity and water saturation is U-shaped.When high salinity water(salt water)is injected,the curve is L-shaped.The classification criteria of water-flooded layers for carbonate reservoirs are as follows:(1)In porous reservoirs,the water cut(fw)is less than or equal to 5%in oil layers,5%–20%in weak water-flooded layers,20%–50%in moderately water-flooded layers,and greater than 50%in strong water-flooded layers.(2)For fractured,porous-fractured and composite reservoirs,the oil layers,weakly water-flooded layers,moderately water-flooded layers,and severely water-flooded layers have a water content of less than or equal to 5%,5%and 10%,10%to 50%,and larger than 50%respectively.
文摘通过实验室模拟与现场应用分析,详细考察了弱凝胶体系的性能以及在油田中的实际应用效果。实验结果显示,弱凝胶体系的成胶时间从20℃的115.2 min显著减少至70℃的14.9 min,黏度从1560.5 m Pa·s降至1047.2 m Pa·s,体现了温度提高加速化学交联反应的效果。在老化稳定性实验中,凝胶黏度在室温条件下经过3个月从初始的1200 m Pa·s缓慢降至1149 m Pa·s,而在80℃的高温条件下,从1013 m Pa·s降至970 m Pa·s,表明温度的升高加速了老化过程,但整体上凝胶展示了良好的稳定性。剪切稳定性测试中,凝胶黏度从500 r·min^(-1)的1198 m Pa·s降至5000 r·min^(-1)的987 m Pa·s,显示出良好的剪切稳定性。大洼油田采用弱凝胶调驱技术后,油井的日产油量平均提升了50%,同时减少了水窜现象,优化了油水分层,显著提高了油田的整体采收效率。
文摘为了解决高压欠注水井降压增注中面临的难题,以定边油田低渗透油藏的主力区块为研究对象,研究该区块的高压注水井在线酸化增注技术。利用单步法酸液体系可以抑制二次、三次沉淀物和溶解堵塞物的特性,设计在线单步法酸化智能增注系统,通过“监控表皮系数变化情况”判断“是否对目的层段持续酸化”,确保最佳酸化效果。室内实验和现场试验结果表明:G-智能复合酸对氟化钠和氟硅酸盐产生二次沉淀的抑制性最好,单步法酸液体系选择G-智能复合酸可以更好地抑制酸反应时二次沉淀物的产生;堵塞物在酸液+助渗透剂剂T影响下的溶蚀率在73.9%~79%之间,堵塞物溶蚀率高于仅加入酸液的,单步法酸液体系选择酸液+助渗透剂可提升堵塞物溶蚀率;与只注入助渗透剂T相比,注入G-智能复合酸+助渗透剂T的高压注水井的油压下降1.0~3.4 MPa,日注水量增加6.1~9.8 m 3,该技术优势显著。