Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsi...Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsinformedneural network(PINN)is currently the most general framework,which is more popular due to theconvenience of constructing NNs and excellent generalization ability.The automatic differentiation(AD)-basedPINN model is suitable for the homogeneous scientific problem;however,it is unclear how AD can enforce fluxcontinuity across boundaries between cells of different properties where spatial heterogeneity is represented bygrid cells with different physical properties.In this work,we propose a criss-cross physics-informed convolutionalneural network(CC-PINN)learning architecture,aiming to learn the solution of parametric PDEs with spatialheterogeneity of physical properties.To achieve the seamless enforcement of flux continuity and integration ofphysicalmeaning into CNN,a predefined 2D convolutional layer is proposed to accurately express transmissibilitybetween adjacent cells.The efficacy of the proposedmethodwas evaluated through predictions of several petroleumreservoir problems with spatial heterogeneity and compared against state-of-the-art(PINN)through numericalanalysis as a benchmark,which demonstrated the superiority of the proposed method over the PINN.展开更多
By means of maximum principle for nonlinear hyperbolic systems, the results given by HSIAO Ling and D. Serre was improved for Cauchy problem of compressible adiabatic flow through porous media, and a complete result o...By means of maximum principle for nonlinear hyperbolic systems, the results given by HSIAO Ling and D. Serre was improved for Cauchy problem of compressible adiabatic flow through porous media, and a complete result on the global existence and the blow-up phenomena of classical solutions of these systems. These results show that the dissipation is strong enough to preserve the smoothness of ‘small ’ solution.展开更多
Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates ne...Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates near the well bore region. How to describe the condensate blockage effect exactly has been a continuous research topic. However, up to now, the present methods usually over-estimate or underestimate the productivity reduction due to an incorrect understanding of the mechanism of flow in porous medium, which inevitably results in an inaccurate prediction of production performance. It has been found in recent numerous theoretical and experimental studies that capillary number and non-Darcy flow have significant influence on relative permeability in regions near the well bore. The two effects impose opposite impacts on production performance, thus leading to gas condensate flow showing characteristics different from general understanding. It is significant for prediction of performance in gas condensate wells to understand the two effects exactly. The aim of the paper is to describe and analyze the flow dynamics in porous media accurately during the production of gas condensate reservoirs. Based on the description of three-zone flow mechanism, capillary number and non-Darcy effect are incorporated in the analysis of relative permeability, making it possible to describe the effect of condensate blockage. The effect of capillary number and inertial flow on gas and condensate relative permeability is analyzed in detail. Novel Inflow Performance Relation (IPR) models considering high velocity effects are formulated and the contrast analysis of different IPR models is conducted. The result shows that the proposed method can help predict the production performance and productivity more accurately than conventional methods.展开更多
The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferent...The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferentially gas-covered ability and surface free energy changes,definition and evaluation methods have been established.Second,a method for altering rock wettability and its mechanisms have been studied,surface oriented phenomena of functional groups with low surface energy are the fundamental reason for gas wettability alteration of rock.Third,the effect of gas wettability on the surface energy,electrical properties and dilatability are investigated.Last,the effects of gas wettability on capillary pressure,oil/gas/water distribution and flow are investigated with capillary tubes and etchedglass network models.The gas wettability theory of reservoir rocks has been initially established,which provides theoretical support for the efficient production of unconventional reservoirs and has great significance.展开更多
Based on Huang's accurate tri-sectional nonlin- ear kinematic equation (1997), a dimensionless simplified mathematical model for nonlinear flow in one-dimensional semi-infinite long porous media with low permeabili...Based on Huang's accurate tri-sectional nonlin- ear kinematic equation (1997), a dimensionless simplified mathematical model for nonlinear flow in one-dimensional semi-infinite long porous media with low permeability is presented for the case of a constant flow rate on the inner boundary. This model contains double moving boundaries, including an internal moving boundary and an external mov- ing boundary, which are different from the classical Stefan problem in heat conduction: The velocity of the external moving boundary is proportional to the second derivative of the unknown pressure function with respect to the distance parameter on this boundary. Through a similarity transfor- mation, the nonlinear partial differential equation (PDE) sys- tem is transformed into a linear PDE system. Then an ana- lytical solution is obtained for the dimensionless simplified mathematical model. This solution can be used for strictly checking the validity of numerical methods in solving such nonlinear mathematical models for flows in low-permeable porous media for petroleum engineering applications. Finally, through plotted comparison curves from the exact an- alytical solution, the sensitive effects of three characteristic parameters are discussed. It is concluded that with a decrease in the dimensionless critical pressure gradient, the sensi- tive effects of the dimensionless variable on the dimension- less pressure distribution and dimensionless pressure gradi- ent distribution become more serious; with an increase in the dimensionless pseudo threshold pressure gradient, the sensi- tive effects of the dimensionless variable become more serious; the dimensionless threshold pressure gradient (TPG) has a great effect on the external moving boundary but has little effect on the internal moving boundary.展开更多
This paper gives an overview on nonlinear porous flow in low permeability porous media, reveals the microscopic mechanisms of flows, and clarifies properties of porous flow fluids. It shows that, deviating from Darcy...This paper gives an overview on nonlinear porous flow in low permeability porous media, reveals the microscopic mechanisms of flows, and clarifies properties of porous flow fluids. It shows that, deviating from Darcy's linear law, the porous flow characteristics obey a nonlinear law in a low-permeability porous medium, and the viscosity of the porous flow fluid and the permeability values of water and oil are not constants. Based on these characters, a new porous flow model, which can better describe low permeability reservoir~ is established. This model can describe various patterns of porous flow, as Darcy's linear law does. All the parameters involved in the model, having definite physical meanings, can be obtained directly from the experiments.展开更多
Taking into consideration the gas compressibility and chemical reaction reversibility, a model was developed to study the interactions between gas flow and chemical reaction in porous media and resolved by the finite ...Taking into consideration the gas compressibility and chemical reaction reversibility, a model was developed to study the interactions between gas flow and chemical reaction in porous media and resolved by the finite volume method on the basis of the gas-solid reaction aA(g)+bB(s)cC(g)+dD(s).The numerical analysis shows that the equilibrium constant is an important factor influencing the process of gas-solid reaction. The stoichiometric coefficients, molar masses of reactant gas, product gas and inert gas are the main factors influencing the density of gas mixture. The equilibrium constant influences the gas flow in porous media obviously when the stoichiometric coefficients satisfy a/c≠1.展开更多
By means of maximum principle for nonlinear hyperbolic systems, the results given by HSIAO Ling and D. Serre was improved for Cauchy problem of compressible adiabatic flow through porous media, and a complete result o...By means of maximum principle for nonlinear hyperbolic systems, the results given by HSIAO Ling and D. Serre was improved for Cauchy problem of compressible adiabatic flow through porous media, and a complete result on the global existence and the blow-up phenomena of classical solutions of these systems. These results show that the dissipation is strong enough to preserve the smoothness of ‘small ’ solution.展开更多
Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consum...Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consuming. In streamline method, transport equations are solved on one-dimensional streamlines to reduce the computation time with less memory for simulation. First, pressure equation is solved on an Eulerian grid and streamlines are traced. Defining the "time of flight", saturation equations are mapped and solved on streamlines. Finally, the results are mapped back on Eulerian grid and the process is repeated until the simulation end time. The waterflooding process is considered in a fractured reservoir using the dual porosity model. Afterwards, a computational code is developed to solve the same problem by the IMPES method and the results of streamline simulation are compared to those of the IMPES and a commercial software. Finally, the accuracy and efficiency of streamline simulator for simulation of two-phase flow in fractured reservoirs has been proved.展开更多
We study the mathematical model of two phase compressible flows through porous media. Under the condition that the compressibility of rock, oil, and water is small, we prove that the initial-boundary value problem of ...We study the mathematical model of two phase compressible flows through porous media. Under the condition that the compressibility of rock, oil, and water is small, we prove that the initial-boundary value problem of the nonlinear system of equations admits a weak solution.展开更多
Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on e...Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on element faces.Discontinuity of velocity field leads this method not to conserve mass locally.Moreover,the accuracy and stability of a solution is highly affected by a non-conservative method.In this paper,a three dimensional control volume finite element method is developed for twophase fluid flow simulation which overcomes the deficiency of the standard finite element method,and attains high-orders of accuracy at a reasonable computational cost.Moreover,this method is capable of handling heterogeneity in a very rational way.A fully implicit scheme is applied to temporal discretization of the governing equations to achieve an unconditionally stable solution.The accuracy and efficiency of the method are verified by simulating some waterflooding experiments.Some representative examples are presented to illustrate the capability of the method to simulate two-phase fluid flow in heterogeneous porous media.展开更多
The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat e...The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat exchanger.For this purpose,numerous numerical simulations are performed to investigate performance of the system with porous media.First,the numerical simulation for the heat exchanger in CHFS system is validated by experimental data.Then,porous media is added to the system and six different thicknesses for the porous media are examined to obtain the optimum thickness,based on the minimum required length of the heat exchanger.Finally,by changing the flow rate and inlet temperature of the product as well as the cooling water flow rate,the minimum required length of the heat exchanger with porous media for various inlet conditions is assessed.The investigations indicate that using porous media with the proper thickness in the heat exchanger increases the cooling rate of the product by almost 40% and reduces the required length of the heat exchanger by approximately 35%.The results also illustrate that the most proper thickness of the porous media is approximately equal to 90% of the product tube's thickness.Results of this study lead to design a porous heat exchanger in CHFS system for various inlet conditions.展开更多
To identify the type of main flow channels of complex porous media in oil and gas reservoirs,the"main flow channel index"is defined as the ratio of comprehensive permeability obtained from well test to matri...To identify the type of main flow channels of complex porous media in oil and gas reservoirs,the"main flow channel index"is defined as the ratio of comprehensive permeability obtained from well test to matrix permeability obtained from core analysis or well logging.Meanwhile,a mathematical model is established based on equivalent flow assumption,the classification method for main flow channels is put forward,and quantitative characterization of main flow channels is realized.The method has been verified by analysis of typical gas reservoirs.The study results show that the"main flow channel index"can quantitatively classify types of flow channels.If the index is less than 3,the matrix pore is the main flow channel;if the index is between 3 and 20,the fracture is the main flow channel and the matrix pore acts as the supplement one;if the index is more than 20,the fracture is the only seepage channel.The dynamic analysis of typical gas reservoirs shows that the"main flow channel index"can be used to identify the type of flow channel in complex porous media,guiding the classified development of gas reservoirs,and avoiding development risk.展开更多
Background: Many factors can contribute to atherosclerotic-type vascular changes in older individuals or men. Thus, confining the investigation to young women with no clinical evidence of the condition could enhance u...Background: Many factors can contribute to atherosclerotic-type vascular changes in older individuals or men. Thus, confining the investigation to young women with no clinical evidence of the condition could enhance understanding of the early stages of cardiovascular disease. The aim of this study was to determine whether carotid mean/max intima-media thickness (IMT) and brachial flow-mediated dilation (FMD) values, which are well-known event-related indices, are associated with laboratory data and the other vascular indices of atherosclerosis in healthy young women. Methods: Carotid mean/max IMT and brachial FMD were measured in young women with no clinical evidence of atherosclerosis (n = 110;mean age, 39 years) who were instructed not to eat, drink or smoke after 9 PM the evening before testing. All participants also underwent laboratory assessment, including simultaneous measurements of arterial stiffness such as augmentation index (AI), cardioankle vascular index (CAVI) and brachial-ankle pulse wave velocity (baPWV). Results: Mean IMT was signifi-cantly and positively associated with age (p = 0.002), CAVI (p = 0.044), low-density lipoprotein-cholesterol (LDL-C, p = 0.047) and high-sensitive C-reactive protein (hs-CRP, p = 0.002) values but was not related to FMD, AI, baPWV or triglycerides (TG) in the multivariate regression analysis. Similarly, max IMT was positively associated with age (p p = 0.003) and hs-CRP (p = 0.005) values but was not related to FMD, AI, CAVI, baPWV, TG or blood pressure level in the multivariate regression analysis. The association between LDL-C and max IMT was much stronger than that between LDL-C and mean IMT. Brachial FMD was positively associated only with heart rate in the multivariate regression analysis. Conclusions: These results suggest that mean IMT more closely represents the sclerotic aspect of vascular change, whereas max IMT represents the atherotic aspect in healthy young women. Although the relationship between the autonomic nervous system and heart rate is well-known, there may be a complex interaction between the autonomic nervous system and endothelial function.展开更多
Plane, transverse MHD flow through a porous structure is considered in this work. Solution to the governing equations is obtained using an inverse method in which the streamfunction of the flow is considered linear in...Plane, transverse MHD flow through a porous structure is considered in this work. Solution to the governing equations is obtained using an inverse method in which the streamfunction of the flow is considered linear in one of the space variables. Expressions for flow quantities are obtained for finitely conducting and infinitely conducting fluids.展开更多
Based on the mathematical model of one dimension transient flow of the polymer foam in porous media, the numerical calculation method of the flow mentioned above by using the finite difference method is given. Through...Based on the mathematical model of one dimension transient flow of the polymer foam in porous media, the numerical calculation method of the flow mentioned above by using the finite difference method is given. Through the experiments of one dimension transient flow of HPAM (Hydrolytic Polyacrylamide) foam in the artificial sandstone core, the HPAM foam generation and coalescence coefficient of the mathematical model mentioned above are determined. The profiles of the liquid phase saturation, the pressure drop and the number density of one dimension transient flow of HPAM foam with the dimensionless time in artificial sandstone core are numerically calculated and analyzed by using the numerical calculation method.展开更多
The objective of this study is to understand the process of fluid flow in pipe and porous media with different pore structures. High-resolution Magnetic Resonance Imaging (MRI) technique was used to visualize the po...The objective of this study is to understand the process of fluid flow in pipe and porous media with different pore structures. High-resolution Magnetic Resonance Imaging (MRI) technique was used to visualize the pore structure and measure fluid flow. The porous media was formed by packed bed of glass beads. Flow measurement was carried out by a modified spin echo sequence. The results show that the velocity distribution in pipe is annular and the linear relation between MRI velocity and actual velocity is found in pipe flow measurement. The flow distribution in porous media is rather heterogeneous, and it is consistent with heterogeneous pore structure. The flow through pores with the high volume flow rate is determined largely by geometrical effects such as pore size and cross-sectional area.展开更多
This paper presents the analytical solutions in Laplace domain for two-dimensional nonsteady flow of slightly compressible liquid in porous media with double porosity by using the methods of integral transforms and va...This paper presents the analytical solutions in Laplace domain for two-dimensional nonsteady flow of slightly compressible liquid in porous media with double porosity by using the methods of integral transforms and variables separation. The effects of the ratio of storativities to , interporosity flow parameter on the pressure behaviors for a vertically fractured well with infinite conductivity are investigated by using the method of numerical inversion. The new log-log diagnosis graph of the pressures is given and analysed.展开更多
Modeling reservoir permeability is one of the crucial tasks in reservoir simulation studies.Traditionally,it is done by kriging-based methods.More rigorous modeling of the permeability results in more reliable outputs...Modeling reservoir permeability is one of the crucial tasks in reservoir simulation studies.Traditionally,it is done by kriging-based methods.More rigorous modeling of the permeability results in more reliable outputs of the reservoir models.Recently,a new category of geostatistical methods has been used for this purpose,namely multiple point statistics(MPS).By this new category of permeability modeling methods,one is able to predict the heterogeneity of the reservoir permeability as a continuous variable.These methods consider the direction of property variation in addition to the distances of known locations of the property.In this study,the reservoir performance of a modified version of the SPE 10 solution project as a pioneer case is used for investigating the efficiency of these methods and paralleling them with the kriging-based one.In this way,the permeability texture concept is introduced by applying some MPS methods.This study is accomplished in the conditions of real reservoir dimensions and velocities for the whole reservoir life.A continuous training image is used as the input of calculation for the permeability modeling.The results show that the detailed permeability of the reservoir as a continuous variable makes the reservoir simulation show the same fluid front movement and flooding behavior of the reservoir similar to the reference case with the same permeability heterogeneity.Some MPS methods enable the reservoir simulation to reproduce the fluid flow complexities such as bypassing and oil trapping during water flooding similar to the reference case.Accordingly,total oil production is predicted with higher accuracy and lower uncertainty.All studied cases are identical except for the permeability texture.Even histograms and variograms of permeabilities for the studied reservoir are quite similar,but the performance of the reservoir shows that kriging-based method results have slightly less accuracy than some MPS methods.Meanwhile,it results in lower uncertainty in outputs for this water flooding case performance.展开更多
The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding...The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding transient flow in fractal reservoirs was studied by numerical differentiation method: the influence of fractal index to transient pressure of vertically fractured well was analyzed. Finally the approximate analytical solution of transient flow was given by average mass conservation law. The study shows that using elliptic flow method to analyze the flow of vertically fractured well is a simple method.展开更多
基金the National Natural Science Foundation of China(No.52274048)Beijing Natural Science Foundation(No.3222037)+1 种基金the CNPC 14th Five-Year Perspective Fundamental Research Project(No.2021DJ2104)the Science Foundation of China University of Petroleum,Beijing(No.2462021YXZZ010).
文摘Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsinformedneural network(PINN)is currently the most general framework,which is more popular due to theconvenience of constructing NNs and excellent generalization ability.The automatic differentiation(AD)-basedPINN model is suitable for the homogeneous scientific problem;however,it is unclear how AD can enforce fluxcontinuity across boundaries between cells of different properties where spatial heterogeneity is represented bygrid cells with different physical properties.In this work,we propose a criss-cross physics-informed convolutionalneural network(CC-PINN)learning architecture,aiming to learn the solution of parametric PDEs with spatialheterogeneity of physical properties.To achieve the seamless enforcement of flux continuity and integration ofphysicalmeaning into CNN,a predefined 2D convolutional layer is proposed to accurately express transmissibilitybetween adjacent cells.The efficacy of the proposedmethodwas evaluated through predictions of several petroleumreservoir problems with spatial heterogeneity and compared against state-of-the-art(PINN)through numericalanalysis as a benchmark,which demonstrated the superiority of the proposed method over the PINN.
文摘By means of maximum principle for nonlinear hyperbolic systems, the results given by HSIAO Ling and D. Serre was improved for Cauchy problem of compressible adiabatic flow through porous media, and a complete result on the global existence and the blow-up phenomena of classical solutions of these systems. These results show that the dissipation is strong enough to preserve the smoothness of ‘small ’ solution.
基金Project“973",a national fundamental research development program
文摘Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates near the well bore region. How to describe the condensate blockage effect exactly has been a continuous research topic. However, up to now, the present methods usually over-estimate or underestimate the productivity reduction due to an incorrect understanding of the mechanism of flow in porous medium, which inevitably results in an inaccurate prediction of production performance. It has been found in recent numerous theoretical and experimental studies that capillary number and non-Darcy flow have significant influence on relative permeability in regions near the well bore. The two effects impose opposite impacts on production performance, thus leading to gas condensate flow showing characteristics different from general understanding. It is significant for prediction of performance in gas condensate wells to understand the two effects exactly. The aim of the paper is to describe and analyze the flow dynamics in porous media accurately during the production of gas condensate reservoirs. Based on the description of three-zone flow mechanism, capillary number and non-Darcy effect are incorporated in the analysis of relative permeability, making it possible to describe the effect of condensate blockage. The effect of capillary number and inertial flow on gas and condensate relative permeability is analyzed in detail. Novel Inflow Performance Relation (IPR) models considering high velocity effects are formulated and the contrast analysis of different IPR models is conducted. The result shows that the proposed method can help predict the production performance and productivity more accurately than conventional methods.
基金supported by the Basic Research on Drilling & Completion of Critical Wells for Oil & Gas (Grant No. 51221003)National Science Fund for Petrochemical Industry (Project No. U1262201)+2 种基金"863" National Project (Project No. 2013AA064803)National Science Fund for Distinguished Young Scholars (Project No. 50925414)National Natural Science Foundation (Project No. 51074173)
文摘The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferentially gas-covered ability and surface free energy changes,definition and evaluation methods have been established.Second,a method for altering rock wettability and its mechanisms have been studied,surface oriented phenomena of functional groups with low surface energy are the fundamental reason for gas wettability alteration of rock.Third,the effect of gas wettability on the surface energy,electrical properties and dilatability are investigated.Last,the effects of gas wettability on capillary pressure,oil/gas/water distribution and flow are investigated with capillary tubes and etchedglass network models.The gas wettability theory of reservoir rocks has been initially established,which provides theoretical support for the efficient production of unconventional reservoirs and has great significance.
基金supported by the National Natural Science Foundation of China(11102237)Program for Changjiang Scholars and Innovative Research Team in University(IRT1294)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20110133120012)China Scholarship Council(CSC)
文摘Based on Huang's accurate tri-sectional nonlin- ear kinematic equation (1997), a dimensionless simplified mathematical model for nonlinear flow in one-dimensional semi-infinite long porous media with low permeability is presented for the case of a constant flow rate on the inner boundary. This model contains double moving boundaries, including an internal moving boundary and an external mov- ing boundary, which are different from the classical Stefan problem in heat conduction: The velocity of the external moving boundary is proportional to the second derivative of the unknown pressure function with respect to the distance parameter on this boundary. Through a similarity transfor- mation, the nonlinear partial differential equation (PDE) sys- tem is transformed into a linear PDE system. Then an ana- lytical solution is obtained for the dimensionless simplified mathematical model. This solution can be used for strictly checking the validity of numerical methods in solving such nonlinear mathematical models for flows in low-permeable porous media for petroleum engineering applications. Finally, through plotted comparison curves from the exact an- alytical solution, the sensitive effects of three characteristic parameters are discussed. It is concluded that with a decrease in the dimensionless critical pressure gradient, the sensi- tive effects of the dimensionless variable on the dimension- less pressure distribution and dimensionless pressure gradi- ent distribution become more serious; with an increase in the dimensionless pseudo threshold pressure gradient, the sensi- tive effects of the dimensionless variable become more serious; the dimensionless threshold pressure gradient (TPG) has a great effect on the external moving boundary but has little effect on the internal moving boundary.
文摘This paper gives an overview on nonlinear porous flow in low permeability porous media, reveals the microscopic mechanisms of flows, and clarifies properties of porous flow fluids. It shows that, deviating from Darcy's linear law, the porous flow characteristics obey a nonlinear law in a low-permeability porous medium, and the viscosity of the porous flow fluid and the permeability values of water and oil are not constants. Based on these characters, a new porous flow model, which can better describe low permeability reservoir~ is established. This model can describe various patterns of porous flow, as Darcy's linear law does. All the parameters involved in the model, having definite physical meanings, can be obtained directly from the experiments.
基金Projects(51304035,50974030)supported by the National Natural Science Foundation of ChinaProject(20110491512)supported by the Postdoctoral Science Foundation of China+2 种基金Project(20130042120034)supported by the Specialized Research Fund for the Doctoral Program of Higher Education(New Teachers),ChinaProject(120401008)supported by the Fundamental Research Funds for Central Universities,ChinaProject(L20150173)supported by the Scientific Research Fund of Liaoning Provincial Education Department,China
文摘Taking into consideration the gas compressibility and chemical reaction reversibility, a model was developed to study the interactions between gas flow and chemical reaction in porous media and resolved by the finite volume method on the basis of the gas-solid reaction aA(g)+bB(s)cC(g)+dD(s).The numerical analysis shows that the equilibrium constant is an important factor influencing the process of gas-solid reaction. The stoichiometric coefficients, molar masses of reactant gas, product gas and inert gas are the main factors influencing the density of gas mixture. The equilibrium constant influences the gas flow in porous media obviously when the stoichiometric coefficients satisfy a/c≠1.
文摘By means of maximum principle for nonlinear hyperbolic systems, the results given by HSIAO Ling and D. Serre was improved for Cauchy problem of compressible adiabatic flow through porous media, and a complete result on the global existence and the blow-up phenomena of classical solutions of these systems. These results show that the dissipation is strong enough to preserve the smoothness of ‘small ’ solution.
文摘Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consuming. In streamline method, transport equations are solved on one-dimensional streamlines to reduce the computation time with less memory for simulation. First, pressure equation is solved on an Eulerian grid and streamlines are traced. Defining the "time of flight", saturation equations are mapped and solved on streamlines. Finally, the results are mapped back on Eulerian grid and the process is repeated until the simulation end time. The waterflooding process is considered in a fractured reservoir using the dual porosity model. Afterwards, a computational code is developed to solve the same problem by the IMPES method and the results of streamline simulation are compared to those of the IMPES and a commercial software. Finally, the accuracy and efficiency of streamline simulator for simulation of two-phase flow in fractured reservoirs has been proved.
基金supported by the China State Major Key Project for Basic Researches
文摘We study the mathematical model of two phase compressible flows through porous media. Under the condition that the compressibility of rock, oil, and water is small, we prove that the initial-boundary value problem of the nonlinear system of equations admits a weak solution.
基金Iranian Offshore Oil Company (IOOC) for financial support of this work
文摘Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on element faces.Discontinuity of velocity field leads this method not to conserve mass locally.Moreover,the accuracy and stability of a solution is highly affected by a non-conservative method.In this paper,a three dimensional control volume finite element method is developed for twophase fluid flow simulation which overcomes the deficiency of the standard finite element method,and attains high-orders of accuracy at a reasonable computational cost.Moreover,this method is capable of handling heterogeneity in a very rational way.A fully implicit scheme is applied to temporal discretization of the governing equations to achieve an unconditionally stable solution.The accuracy and efficiency of the method are verified by simulating some waterflooding experiments.Some representative examples are presented to illustrate the capability of the method to simulate two-phase fluid flow in heterogeneous porous media.
文摘The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat exchanger.For this purpose,numerous numerical simulations are performed to investigate performance of the system with porous media.First,the numerical simulation for the heat exchanger in CHFS system is validated by experimental data.Then,porous media is added to the system and six different thicknesses for the porous media are examined to obtain the optimum thickness,based on the minimum required length of the heat exchanger.Finally,by changing the flow rate and inlet temperature of the product as well as the cooling water flow rate,the minimum required length of the heat exchanger with porous media for various inlet conditions is assessed.The investigations indicate that using porous media with the proper thickness in the heat exchanger increases the cooling rate of the product by almost 40% and reduces the required length of the heat exchanger by approximately 35%.The results also illustrate that the most proper thickness of the porous media is approximately equal to 90% of the product tube's thickness.Results of this study lead to design a porous heat exchanger in CHFS system for various inlet conditions.
文摘To identify the type of main flow channels of complex porous media in oil and gas reservoirs,the"main flow channel index"is defined as the ratio of comprehensive permeability obtained from well test to matrix permeability obtained from core analysis or well logging.Meanwhile,a mathematical model is established based on equivalent flow assumption,the classification method for main flow channels is put forward,and quantitative characterization of main flow channels is realized.The method has been verified by analysis of typical gas reservoirs.The study results show that the"main flow channel index"can quantitatively classify types of flow channels.If the index is less than 3,the matrix pore is the main flow channel;if the index is between 3 and 20,the fracture is the main flow channel and the matrix pore acts as the supplement one;if the index is more than 20,the fracture is the only seepage channel.The dynamic analysis of typical gas reservoirs shows that the"main flow channel index"can be used to identify the type of flow channel in complex porous media,guiding the classified development of gas reservoirs,and avoiding development risk.
文摘Background: Many factors can contribute to atherosclerotic-type vascular changes in older individuals or men. Thus, confining the investigation to young women with no clinical evidence of the condition could enhance understanding of the early stages of cardiovascular disease. The aim of this study was to determine whether carotid mean/max intima-media thickness (IMT) and brachial flow-mediated dilation (FMD) values, which are well-known event-related indices, are associated with laboratory data and the other vascular indices of atherosclerosis in healthy young women. Methods: Carotid mean/max IMT and brachial FMD were measured in young women with no clinical evidence of atherosclerosis (n = 110;mean age, 39 years) who were instructed not to eat, drink or smoke after 9 PM the evening before testing. All participants also underwent laboratory assessment, including simultaneous measurements of arterial stiffness such as augmentation index (AI), cardioankle vascular index (CAVI) and brachial-ankle pulse wave velocity (baPWV). Results: Mean IMT was signifi-cantly and positively associated with age (p = 0.002), CAVI (p = 0.044), low-density lipoprotein-cholesterol (LDL-C, p = 0.047) and high-sensitive C-reactive protein (hs-CRP, p = 0.002) values but was not related to FMD, AI, baPWV or triglycerides (TG) in the multivariate regression analysis. Similarly, max IMT was positively associated with age (p p = 0.003) and hs-CRP (p = 0.005) values but was not related to FMD, AI, CAVI, baPWV, TG or blood pressure level in the multivariate regression analysis. The association between LDL-C and max IMT was much stronger than that between LDL-C and mean IMT. Brachial FMD was positively associated only with heart rate in the multivariate regression analysis. Conclusions: These results suggest that mean IMT more closely represents the sclerotic aspect of vascular change, whereas max IMT represents the atherotic aspect in healthy young women. Although the relationship between the autonomic nervous system and heart rate is well-known, there may be a complex interaction between the autonomic nervous system and endothelial function.
文摘Plane, transverse MHD flow through a porous structure is considered in this work. Solution to the governing equations is obtained using an inverse method in which the streamfunction of the flow is considered linear in one of the space variables. Expressions for flow quantities are obtained for finitely conducting and infinitely conducting fluids.
文摘Based on the mathematical model of one dimension transient flow of the polymer foam in porous media, the numerical calculation method of the flow mentioned above by using the finite difference method is given. Through the experiments of one dimension transient flow of HPAM (Hydrolytic Polyacrylamide) foam in the artificial sandstone core, the HPAM foam generation and coalescence coefficient of the mathematical model mentioned above are determined. The profiles of the liquid phase saturation, the pressure drop and the number density of one dimension transient flow of HPAM foam with the dimensionless time in artificial sandstone core are numerically calculated and analyzed by using the numerical calculation method.
基金financially supported by the Major State Basic Research Development Program of China(973 Program,Grant No.2011CB707304)the National Natural Science Foundation of China(Grant Nos.51006016,51006017,51106018 and 51106019)
文摘The objective of this study is to understand the process of fluid flow in pipe and porous media with different pore structures. High-resolution Magnetic Resonance Imaging (MRI) technique was used to visualize the pore structure and measure fluid flow. The porous media was formed by packed bed of glass beads. Flow measurement was carried out by a modified spin echo sequence. The results show that the velocity distribution in pipe is annular and the linear relation between MRI velocity and actual velocity is found in pipe flow measurement. The flow distribution in porous media is rather heterogeneous, and it is consistent with heterogeneous pore structure. The flow through pores with the high volume flow rate is determined largely by geometrical effects such as pore size and cross-sectional area.
文摘This paper presents the analytical solutions in Laplace domain for two-dimensional nonsteady flow of slightly compressible liquid in porous media with double porosity by using the methods of integral transforms and variables separation. The effects of the ratio of storativities to , interporosity flow parameter on the pressure behaviors for a vertically fractured well with infinite conductivity are investigated by using the method of numerical inversion. The new log-log diagnosis graph of the pressures is given and analysed.
文摘Modeling reservoir permeability is one of the crucial tasks in reservoir simulation studies.Traditionally,it is done by kriging-based methods.More rigorous modeling of the permeability results in more reliable outputs of the reservoir models.Recently,a new category of geostatistical methods has been used for this purpose,namely multiple point statistics(MPS).By this new category of permeability modeling methods,one is able to predict the heterogeneity of the reservoir permeability as a continuous variable.These methods consider the direction of property variation in addition to the distances of known locations of the property.In this study,the reservoir performance of a modified version of the SPE 10 solution project as a pioneer case is used for investigating the efficiency of these methods and paralleling them with the kriging-based one.In this way,the permeability texture concept is introduced by applying some MPS methods.This study is accomplished in the conditions of real reservoir dimensions and velocities for the whole reservoir life.A continuous training image is used as the input of calculation for the permeability modeling.The results show that the detailed permeability of the reservoir as a continuous variable makes the reservoir simulation show the same fluid front movement and flooding behavior of the reservoir similar to the reference case with the same permeability heterogeneity.Some MPS methods enable the reservoir simulation to reproduce the fluid flow complexities such as bypassing and oil trapping during water flooding similar to the reference case.Accordingly,total oil production is predicted with higher accuracy and lower uncertainty.All studied cases are identical except for the permeability texture.Even histograms and variograms of permeabilities for the studied reservoir are quite similar,but the performance of the reservoir shows that kriging-based method results have slightly less accuracy than some MPS methods.Meanwhile,it results in lower uncertainty in outputs for this water flooding case performance.
文摘The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding transient flow in fractal reservoirs was studied by numerical differentiation method: the influence of fractal index to transient pressure of vertically fractured well was analyzed. Finally the approximate analytical solution of transient flow was given by average mass conservation law. The study shows that using elliptic flow method to analyze the flow of vertically fractured well is a simple method.