Here,the influence of grinding media with different shapes on the flotation performance of spodumene and its potential mechanism from microscale insights was investigated using a single mineral flotation experiment,X-...Here,the influence of grinding media with different shapes on the flotation performance of spodumene and its potential mechanism from microscale insights was investigated using a single mineral flotation experiment,X-ray diffraction(XRD)test,scanning electron microscopy combined with energy dispersive spectrometry(SEM-EDS),atomic force microscope(AFM)and X-ray photoelectron spectroscopy(XPS).The flotation data indicated that under anionic/cationic(sodium oleate(NaOL)/DDA)collectors system,the rod milled spodumene has a higher floatability than ball milled ones.XRD results confirmed that rod medium makes spodumene exposed more{110}and{100}planes,while ball medium makes spodumene exposed more{010}planes.The typical anisotropic surface of spodumene makes the surface of rod milled spodumene possess more Al sites,further confirmed by SEM-EDS and XPS results.Additionally,it was found that the rod milled spodumene presents a larger value of elongation and flatness,which are parameters closely related to bubble adhesion.AFM analysis indicated that rod milled products have a rougher surface,while ball milled products have a smoother surface.Consequently,the rod medium enhanced the adsorption of NaOL/DDA on the spodumene surfaces.This work provides theoretical guidance for optimizing the separation of spodumene from the perspective of grinding.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51922091,51674207,and 52004337)the Sichuan Science and Technology Program(Nos.2019YFS0453,2018JY0148 and SYZ202074).
文摘Here,the influence of grinding media with different shapes on the flotation performance of spodumene and its potential mechanism from microscale insights was investigated using a single mineral flotation experiment,X-ray diffraction(XRD)test,scanning electron microscopy combined with energy dispersive spectrometry(SEM-EDS),atomic force microscope(AFM)and X-ray photoelectron spectroscopy(XPS).The flotation data indicated that under anionic/cationic(sodium oleate(NaOL)/DDA)collectors system,the rod milled spodumene has a higher floatability than ball milled ones.XRD results confirmed that rod medium makes spodumene exposed more{110}and{100}planes,while ball medium makes spodumene exposed more{010}planes.The typical anisotropic surface of spodumene makes the surface of rod milled spodumene possess more Al sites,further confirmed by SEM-EDS and XPS results.Additionally,it was found that the rod milled spodumene presents a larger value of elongation and flatness,which are parameters closely related to bubble adhesion.AFM analysis indicated that rod milled products have a rougher surface,while ball milled products have a smoother surface.Consequently,the rod medium enhanced the adsorption of NaOL/DDA on the spodumene surfaces.This work provides theoretical guidance for optimizing the separation of spodumene from the perspective of grinding.