In this paper, we discuss the development of MPEG media transport (MMT), which is a next-generation media transport standard effort by ISQ/MPEG. The architecture and functional areas of MMT are described. The functi...In this paper, we discuss the development of MPEG media transport (MMT), which is a next-generation media transport standard effort by ISQ/MPEG. The architecture and functional areas of MMT are described. The functionality of existing media transport is analyzed to determine whether there is a need for this new media standard. From this analysis, potential areas for standardization in MMT have been identified.展开更多
Recent years have seen the development of a number of mathematical models for the description of the simultaneous transport of microorganisms and bioreactive solutes in porous media. Most models are based on the adve...Recent years have seen the development of a number of mathematical models for the description of the simultaneous transport of microorganisms and bioreactive solutes in porous media. Most models are based on the advection dispersion equation, with terms added to account for interactions with the surfaces of the solid matrix, transformations and microbial activities. Those models based on the advection dispersion equation have all been shown to represent laboratory experimental data adequately although various assumptions have been made concerning the pore scale distribution of bacteria. This paper provides an overview of the recent work on modelling the transport and fate of microorganisms and bioreactive solutes in porous media and examines the different assumptions regarding the pore scale distribution of microorganisms.展开更多
The pressure evolution associated with the transient shock-induced infiltration of gas flow through granular media consisting of mobile particles is numerically investigated using a coupled Eulerian–Lagrangian approa...The pressure evolution associated with the transient shock-induced infiltration of gas flow through granular media consisting of mobile particles is numerically investigated using a coupled Eulerian–Lagrangian approach.The coupling between shock compaction and interstitial flow has been revealed.A distinctive two-stage diffusing pressure field with deflection occurring at the tail of the compaction front is found,with corresponding spikes in both gaseous velocity and temperature profiles emerging within the width of the compaction front.The compaction front,together with the deflection pressure,reaches a steady state during the later period.An analytical prediction of the steady deflection pressure that considers the contributions of porosity and the non-isothermal effect is proposed.The isothermal single-phase method we developed,combining the porosity jump condition across the compaction front,shows consistent pressure evolution with the non-isothermal CMP-PIC one under weak shock strength and low column permeability.Lastly,the microscale mechanism governing the formation of not only pressure deflection but also gaseous velocity and temperature spikes within the width of the compaction front has been described.These aforementioned evolutions of the flow field are shown to arise from the nozzling effects associated with the particle-scale variations in the volume fraction.展开更多
Fluid flow at nanoscale is closely related to many areas in nature and technology(e.g.,unconventional hydrocarbon recovery,carbon dioxide geo-storage,underground hydrocarbon storage,fuel cells,ocean desalination,and b...Fluid flow at nanoscale is closely related to many areas in nature and technology(e.g.,unconventional hydrocarbon recovery,carbon dioxide geo-storage,underground hydrocarbon storage,fuel cells,ocean desalination,and biomedicine).At nanoscale,interfacial forces dominate over bulk forces,and nonlinear effects are important,which significantly deviate from conventional theory.During the past decades,a series of experiments,theories,and simulations have been performed to investigate fluid flow at nanoscale,which has advanced our fundamental knowledge of this topic.However,a critical review is still lacking,which has seriously limited the basic understanding of this area.Therefore herein,we systematically review experimental,theoretical,and simulation works on single-and multi-phases fluid flow at nanoscale.We also clearly point out the current research gaps and future outlook.These insights will promote the significant development of nonlinear flow physics at nanoscale and will provide crucial guidance on the relevant areas.展开更多
Transport behaviors of graphene oxide nanoparticles(GONPs) in saturated porous media were examined as a function of the presence and concentration of anionic surfactant(SDBS)and non-ionic surfactant(Triton X-100...Transport behaviors of graphene oxide nanoparticles(GONPs) in saturated porous media were examined as a function of the presence and concentration of anionic surfactant(SDBS)and non-ionic surfactant(Triton X-100) under different ionic strength(IS). The results showed that the GONPs were retained obviously in the sand columns at both IS of 50 and200 mmol/L, and they were more mobile at lower IS. The presence and concentration of surfactants could enhance the GONP transport, particularly as observed at higher IS. It was interesting to see that the GONP transport was surfactant type dependent, and SDBS was more effective to facilitate GONP transport than Triton X-100 in our experimental conditions. The advection–dispersion–retention numerical modeling followed this trend and depicted the difference quantitatively. Derjaguin–Landau–Verwey–Overbeek(DLVO)interaction calculations also were performed to interpret these effects, indicating that secondary minimum deposition was critical in this study.展开更多
文摘In this paper, we discuss the development of MPEG media transport (MMT), which is a next-generation media transport standard effort by ISQ/MPEG. The architecture and functional areas of MMT are described. The functionality of existing media transport is analyzed to determine whether there is a need for this new media standard. From this analysis, potential areas for standardization in MMT have been identified.
文摘Recent years have seen the development of a number of mathematical models for the description of the simultaneous transport of microorganisms and bioreactive solutes in porous media. Most models are based on the advection dispersion equation, with terms added to account for interactions with the surfaces of the solid matrix, transformations and microbial activities. Those models based on the advection dispersion equation have all been shown to represent laboratory experimental data adequately although various assumptions have been made concerning the pore scale distribution of bacteria. This paper provides an overview of the recent work on modelling the transport and fate of microorganisms and bioreactive solutes in porous media and examines the different assumptions regarding the pore scale distribution of microorganisms.
基金supported by National Natural Science Foundation of China(Grants No.11972088,No.12122203).
文摘The pressure evolution associated with the transient shock-induced infiltration of gas flow through granular media consisting of mobile particles is numerically investigated using a coupled Eulerian–Lagrangian approach.The coupling between shock compaction and interstitial flow has been revealed.A distinctive two-stage diffusing pressure field with deflection occurring at the tail of the compaction front is found,with corresponding spikes in both gaseous velocity and temperature profiles emerging within the width of the compaction front.The compaction front,together with the deflection pressure,reaches a steady state during the later period.An analytical prediction of the steady deflection pressure that considers the contributions of porosity and the non-isothermal effect is proposed.The isothermal single-phase method we developed,combining the porosity jump condition across the compaction front,shows consistent pressure evolution with the non-isothermal CMP-PIC one under weak shock strength and low column permeability.Lastly,the microscale mechanism governing the formation of not only pressure deflection but also gaseous velocity and temperature spikes within the width of the compaction front has been described.These aforementioned evolutions of the flow field are shown to arise from the nozzling effects associated with the particle-scale variations in the volume fraction.
基金the funding support from the National Natural Science Foundation of China(51974013 and 11372033)the Open Research Foundation(NEPU-EOR-2019-003)the initiative funding from the University of Science and Technology Beijing.
文摘Fluid flow at nanoscale is closely related to many areas in nature and technology(e.g.,unconventional hydrocarbon recovery,carbon dioxide geo-storage,underground hydrocarbon storage,fuel cells,ocean desalination,and biomedicine).At nanoscale,interfacial forces dominate over bulk forces,and nonlinear effects are important,which significantly deviate from conventional theory.During the past decades,a series of experiments,theories,and simulations have been performed to investigate fluid flow at nanoscale,which has advanced our fundamental knowledge of this topic.However,a critical review is still lacking,which has seriously limited the basic understanding of this area.Therefore herein,we systematically review experimental,theoretical,and simulation works on single-and multi-phases fluid flow at nanoscale.We also clearly point out the current research gaps and future outlook.These insights will promote the significant development of nonlinear flow physics at nanoscale and will provide crucial guidance on the relevant areas.
基金financially supported by National Natural Science Foundation of China (NSFC NO. 41302196 and 51238001)supported by the Fundamental Research Funds for the Central Universities (NO. 14QNJJ026)
文摘Transport behaviors of graphene oxide nanoparticles(GONPs) in saturated porous media were examined as a function of the presence and concentration of anionic surfactant(SDBS)and non-ionic surfactant(Triton X-100) under different ionic strength(IS). The results showed that the GONPs were retained obviously in the sand columns at both IS of 50 and200 mmol/L, and they were more mobile at lower IS. The presence and concentration of surfactants could enhance the GONP transport, particularly as observed at higher IS. It was interesting to see that the GONP transport was surfactant type dependent, and SDBS was more effective to facilitate GONP transport than Triton X-100 in our experimental conditions. The advection–dispersion–retention numerical modeling followed this trend and depicted the difference quantitatively. Derjaguin–Landau–Verwey–Overbeek(DLVO)interaction calculations also were performed to interpret these effects, indicating that secondary minimum deposition was critical in this study.