Control charts are commonly used tools in statistical process control for the detection of shifts in process parameters. Shewhart-type charts are efficient for large shift values, whereas cumulative sum(CUSUM) charts ...Control charts are commonly used tools in statistical process control for the detection of shifts in process parameters. Shewhart-type charts are efficient for large shift values, whereas cumulative sum(CUSUM) charts are effective in detecting medium and small shifts. Control chart use commonly assumes that data are free of outliers and parameters are known or correctly estimated based on an in-control process. In practice, these assumptions are not often true because some processes occasionally have outliers. Monitoring the location parameter is usually based on mean charts, which are seriously affected by violations of these assumptions. In this paper we propose several CUSUM median control charts based on auxiliary variables, and offer comparisons with their corresponding mean control charts. To monitor the location parameter, we examined the performance of mean and median control charts in the presence and absence of outliers. Both symmetric and non-symmetric processes were studied to examine the properties of the proposed control charts to monitor the location parameter using CUSUM control charts. We used different run length measures to study in-control and out-of-control performances of CUSUM charts. Results revealed that our proposed control charts perform much better than the traditional charts in the presence of outliers. A real application of our study was provided using data on concrete compressive strength as it relates to the quality of cement manufacturing.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11371077 and 11471065)the Fundamental Research Funds for the Central Universities,China(No.DUT15LK28)
文摘Control charts are commonly used tools in statistical process control for the detection of shifts in process parameters. Shewhart-type charts are efficient for large shift values, whereas cumulative sum(CUSUM) charts are effective in detecting medium and small shifts. Control chart use commonly assumes that data are free of outliers and parameters are known or correctly estimated based on an in-control process. In practice, these assumptions are not often true because some processes occasionally have outliers. Monitoring the location parameter is usually based on mean charts, which are seriously affected by violations of these assumptions. In this paper we propose several CUSUM median control charts based on auxiliary variables, and offer comparisons with their corresponding mean control charts. To monitor the location parameter, we examined the performance of mean and median control charts in the presence and absence of outliers. Both symmetric and non-symmetric processes were studied to examine the properties of the proposed control charts to monitor the location parameter using CUSUM control charts. We used different run length measures to study in-control and out-of-control performances of CUSUM charts. Results revealed that our proposed control charts perform much better than the traditional charts in the presence of outliers. A real application of our study was provided using data on concrete compressive strength as it relates to the quality of cement manufacturing.