Motive of the study is to present quantitative and qualitative analysis and comparison of beam data measurement with FF (flattening filter) and FFF (flattening filter free) beam in a Varian TrueBeam<sup>TM</s...Motive of the study is to present quantitative and qualitative analysis and comparison of beam data measurement with FF (flattening filter) and FFF (flattening filter free) beam in a Varian TrueBeam<sup>TM</sup> Medical Linear Accelerator. Critique of beam characterization and evolution of dosimetric properties for 6 MV, 10 MV, 15 MV FF beam and 6 MVFFF, 10 MVFFF FFF beam has been carried out. We performed the comparison of photon beam data for two standard FF photon energy 6 MV, 10 MV verses 6 MVFFF, and 10 MVFFF FFF beam. Determination and comparison of parameter involved PDD (Percentage depth dose), Depth dose profile, Symmetry, Flatness, Quality index, Relative output factor, Penumbra, Transmission factor, DLG (Dosimetric leaf gap), in addition to degree of Un-flatness and off-axis ratio of FFF beam. Outcomes of presenting study had shown that change of various parameters such as Percentage depth dose curves, Shape of the depth dose profile, Transmission, Value of quality index and significant rise in surface dose for FFF in comparison with FF beam. Differences in the output factor at lower and higher field sizes for FFF beam compared to that of FF beam were found. The maximum output factor deviation between 6 MV and 6 MVFFF was found to be 4.55%, whereas in 10 MV and 10 MVFFF was 5.71%. Beam quality TPR20/10 for FFF beam was found to be lesser in magnitude, 5.42% for 6 MVFFF whereas 4.50% for 10 MVFFF compared to 6 MV and 10 MV FF beam respectively. Jaw transmission and interleaf leakage for FFF beam were found to be lesser than FF beam. Also DLG for FFF beam was found to be lesser in magnitude comparable to that of flattened beam. This study is mainly inclined towards evaluation and comparison of the FF and FFF beam. It has been observed that, the outcome of a commissioning beam data generation fully complies with vendor specification and published literature.展开更多
Objective:In this study,we try to establish an initial electron beam model by combining Monte Carlo simulation method with particle dynamic calculation(TRSV)for the single 6 MV X-ray accelerating waveguide of BJ-6 med...Objective:In this study,we try to establish an initial electron beam model by combining Monte Carlo simulation method with particle dynamic calculation(TRSV)for the single 6 MV X-ray accelerating waveguide of BJ-6 medical linac.Methods and Materials:1.We adapted the treatment head configuration of BJ-6 medical linac made by Beijing Medical Equipment Institute(BMEI)as the radiation system for this study.2.Use particle dynamics calculation code called TRSV to drive out the initial electron beam parameters of the energy spectrum,the spatial intensity distribution,and the beam incidence angle.3.Analyze the 6 MV X-ray beam characteristics of PDDc,OARc in a water phantom by using Monte Carlo simulation(BEAMnrc,DOSXYZnrc)for a preset of the initial electron beam parameters which have been determined by TRSV,do the comparisons of the measured results of PDDm,OARm in a real water phantom,and then use the deviations of calculated and measured results to slightly modify the initial electron beam model back and forth until the deviations meet the error less than 2%.Results:The deviations between the Monte Carlo simulation results of percentage depth doses at PDDc and off-axis ratios OARc and the measured results of PDDm and OARm in a water phantom were within 2%.Conclusion:When doing the Monte Carlo simulation to determine the parameters of an initial electron beam for a particular medical linac like BJ-6,modifying some parameters based on the particle dynamics calculation code would give some more reasonable and more acceptable results.展开更多
Metal-halide perovskites are revolutionizing the world of X-ray detectors,due to the development of sensitive,fast,and cost-effective devices.Self-powered operation,ensuring portability and low power consumption,has a...Metal-halide perovskites are revolutionizing the world of X-ray detectors,due to the development of sensitive,fast,and cost-effective devices.Self-powered operation,ensuring portability and low power consumption,has also been recently demonstrated in both bulk materials and thin films.However,the signal stability and repeatability under continuous X-ray exposure has only been tested up to a few hours,often reporting degradation of the detection performance.Here it is shown that self-powered direct X-ray detectors,fabricated starting from a FAPbBr_(3)submicrometer-thick film deposition onto a mesoporous TiO_(2)scaffold,can withstand a 26-day uninterrupted X-ray exposure with negligible signal loss,demonstrating ultra-high operational stability and excellent repeatability.No structural modification is observed after irradiation with a total ionizing dose of almost 200 Gy,revealing an unexpectedly high radiation hardness for a metal-halide perovskite thin film.In addition,trap-assisted photoconductive gain enabled the device to achieve a record bulk sensitivity of 7.28 C Gy^(−1)cm^(−3)at 0 V,an unprecedented value in the field of thin-film-based photoconductors and photodiodes for“hard”X-rays.Finally,prototypal validation under the X-ray beam produced by a medical linear accelerator for cancer treatment is also introduced.展开更多
文摘Motive of the study is to present quantitative and qualitative analysis and comparison of beam data measurement with FF (flattening filter) and FFF (flattening filter free) beam in a Varian TrueBeam<sup>TM</sup> Medical Linear Accelerator. Critique of beam characterization and evolution of dosimetric properties for 6 MV, 10 MV, 15 MV FF beam and 6 MVFFF, 10 MVFFF FFF beam has been carried out. We performed the comparison of photon beam data for two standard FF photon energy 6 MV, 10 MV verses 6 MVFFF, and 10 MVFFF FFF beam. Determination and comparison of parameter involved PDD (Percentage depth dose), Depth dose profile, Symmetry, Flatness, Quality index, Relative output factor, Penumbra, Transmission factor, DLG (Dosimetric leaf gap), in addition to degree of Un-flatness and off-axis ratio of FFF beam. Outcomes of presenting study had shown that change of various parameters such as Percentage depth dose curves, Shape of the depth dose profile, Transmission, Value of quality index and significant rise in surface dose for FFF in comparison with FF beam. Differences in the output factor at lower and higher field sizes for FFF beam compared to that of FF beam were found. The maximum output factor deviation between 6 MV and 6 MVFFF was found to be 4.55%, whereas in 10 MV and 10 MVFFF was 5.71%. Beam quality TPR20/10 for FFF beam was found to be lesser in magnitude, 5.42% for 6 MVFFF whereas 4.50% for 10 MVFFF compared to 6 MV and 10 MV FF beam respectively. Jaw transmission and interleaf leakage for FFF beam were found to be lesser than FF beam. Also DLG for FFF beam was found to be lesser in magnitude comparable to that of flattened beam. This study is mainly inclined towards evaluation and comparison of the FF and FFF beam. It has been observed that, the outcome of a commissioning beam data generation fully complies with vendor specification and published literature.
文摘Objective:In this study,we try to establish an initial electron beam model by combining Monte Carlo simulation method with particle dynamic calculation(TRSV)for the single 6 MV X-ray accelerating waveguide of BJ-6 medical linac.Methods and Materials:1.We adapted the treatment head configuration of BJ-6 medical linac made by Beijing Medical Equipment Institute(BMEI)as the radiation system for this study.2.Use particle dynamics calculation code called TRSV to drive out the initial electron beam parameters of the energy spectrum,the spatial intensity distribution,and the beam incidence angle.3.Analyze the 6 MV X-ray beam characteristics of PDDc,OARc in a water phantom by using Monte Carlo simulation(BEAMnrc,DOSXYZnrc)for a preset of the initial electron beam parameters which have been determined by TRSV,do the comparisons of the measured results of PDDm,OARm in a real water phantom,and then use the deviations of calculated and measured results to slightly modify the initial electron beam model back and forth until the deviations meet the error less than 2%.Results:The deviations between the Monte Carlo simulation results of percentage depth doses at PDDc and off-axis ratios OARc and the measured results of PDDm and OARm in a water phantom were within 2%.Conclusion:When doing the Monte Carlo simulation to determine the parameters of an initial electron beam for a particular medical linac like BJ-6,modifying some parameters based on the particle dynamics calculation code would give some more reasonable and more acceptable results.
基金supported by the project“PARIDE”(Perovskite Advanced Radiotherapy&Imaging Detectors),funded under the Regional Research and Innovation Programme POR-FESR Lazio 2014-2020(project number:A0375-2020-36698).
文摘Metal-halide perovskites are revolutionizing the world of X-ray detectors,due to the development of sensitive,fast,and cost-effective devices.Self-powered operation,ensuring portability and low power consumption,has also been recently demonstrated in both bulk materials and thin films.However,the signal stability and repeatability under continuous X-ray exposure has only been tested up to a few hours,often reporting degradation of the detection performance.Here it is shown that self-powered direct X-ray detectors,fabricated starting from a FAPbBr_(3)submicrometer-thick film deposition onto a mesoporous TiO_(2)scaffold,can withstand a 26-day uninterrupted X-ray exposure with negligible signal loss,demonstrating ultra-high operational stability and excellent repeatability.No structural modification is observed after irradiation with a total ionizing dose of almost 200 Gy,revealing an unexpectedly high radiation hardness for a metal-halide perovskite thin film.In addition,trap-assisted photoconductive gain enabled the device to achieve a record bulk sensitivity of 7.28 C Gy^(−1)cm^(−3)at 0 V,an unprecedented value in the field of thin-film-based photoconductors and photodiodes for“hard”X-rays.Finally,prototypal validation under the X-ray beam produced by a medical linear accelerator for cancer treatment is also introduced.