期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Adaptive Dynamic Dipper Throated Optimization for Feature Selection in Medical Data
1
作者 Ghada Atteia El-Sayed M.El-kenawy +7 位作者 Nagwan Abdel Samee Mona M.Jamjoom Abdelhameed Ibrahim Abdelaziz A.Abdelhamid Ahmad Taher Azar Nima Khodadadi Reham A.Ghanem Mahmoud Y.Shams 《Computers, Materials & Continua》 SCIE EI 2023年第4期1883-1900,共18页
The rapid population growth results in a crucial problem in the early detection of diseases inmedical research.Among all the cancers unveiled,breast cancer is considered the second most severe cancer.Consequently,an e... The rapid population growth results in a crucial problem in the early detection of diseases inmedical research.Among all the cancers unveiled,breast cancer is considered the second most severe cancer.Consequently,an exponential rising in death cases incurred by breast cancer is expected due to the rapid population growth and the lack of resources required for performing medical diagnoses.Utilizing recent advances in machine learning could help medical staff in diagnosing diseases as they offer effective,reliable,and rapid responses,which could help in decreasing the death risk.In this paper,we propose a new algorithm for feature selection based on a hybrid between powerful and recently emerged optimizers,namely,guided whale and dipper throated optimizers.The proposed algorithm is evaluated using four publicly available breast cancer datasets.The evaluation results show the effectiveness of the proposed approach from the accuracy and speed perspectives.To prove the superiority of the proposed algorithm,a set of competing feature selection algorithms were incorporated into the conducted experiments.In addition,a group of statistical analysis experiments was conducted to emphasize the superiority and stability of the proposed algorithm.The best-achieved breast cancer prediction average accuracy based on the proposed algorithm is 99.453%.This result is achieved in an average time of 3.6725 s,the best result among all the competing approaches utilized in the experiments. 展开更多
关键词 medical dataset breast cancer guided whale optimizer dipper throated optimizer feature selection META-HEURISTICS
下载PDF
An Analysis and Prediction of Health Insurance Costs Using Machine Learning-Based Regressor Techniques
2
作者 Gagan Kumar Patra Chandrababu Kuraku +3 位作者 Siddharth Konkimalla Venkata Nagesh Boddapati Manikanth Sarisa Mohit Surender Reddy 《Journal of Data Analysis and Information Processing》 2024年第4期581-596,共16页
One of the most significant annual expenses that a person has is their health insurance coverage. Health insurance accounts for one-third of GDP, and everyone needs medical treatment to varying degrees. Changes in med... One of the most significant annual expenses that a person has is their health insurance coverage. Health insurance accounts for one-third of GDP, and everyone needs medical treatment to varying degrees. Changes in medicine, pharmaceutical trends, and political factors are only a few of the many factors that cause annual fluctuations in healthcare costs. This paper describes how a system may analyse a person’s medical history to display their insurance plans and make predictions about their health insurance premiums. The performance of four ML models—XGBoost, Lasso, KNN, and Ridge—is evaluated using R2-score and RMSE. The analysis of medical health insurance cost prediction using Lasso regression, Ridge regression, and K-Nearest Neighbours (KNN), and XGBoost (XGB) highlights notable differences in performance. KNN has the lowest R2-score of 55.21 and an RMSE of 4431.1, indicating limited predictive ability. Ridge Regression improves on this by an R2-score of 78.38 but has a higher RMSE of 4652.06. Lasso Regression slightly edges out Ridge with an R2-score of 79.78, yet it suffers from an advanced RMSE of 5671.6. In contrast, XGBoost excels with the highest R2-score of 86.81 and the lowermost RMSE of 4450.4, demonstrating superior predictive accuracy and making it the most effective model for this task. The best method for accurately predicting health insurance premiums was XGBoost Regression. The findings beneficial for policymakers, insurers, and healthcare providers as they can use this information to allocate resources more efficiently and enhance cost-effectiveness in the healthcare industry. 展开更多
关键词 medical Cost Health Insurance Cost Prediction medical Cost Personal datasets Machine Learning
下载PDF
An Improved Binary Quantum-based Avian Navigation Optimizer Algorithm to Select Effective Feature Subset from Medical Data:A COVID-19 Case Study
3
作者 Ali Fatahi Mohammad H.Nadimi-Shahraki Hoda Zamani 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期426-446,共21页
Feature Subset Selection(FSS)is an NP-hard problem to remove redundant and irrelevant features particularly from medical data,and it can be effectively addressed by metaheuristic algorithms.However,existing binary ver... Feature Subset Selection(FSS)is an NP-hard problem to remove redundant and irrelevant features particularly from medical data,and it can be effectively addressed by metaheuristic algorithms.However,existing binary versions of metaheuristic algorithms have issues with convergence and lack an effective binarization method,resulting in suboptimal solutions that hinder diagnosis and prediction accuracy.This paper aims to propose an Improved Binary Quantum-based Avian Navigation Optimizer Algorithm(IBQANA)for FSS in medical data preprocessing to address the suboptimal solutions arising from binary versions of metaheuristic algorithms.The proposed IBQANA’s contributions include the Hybrid Binary Operator(HBO)and the Distance-based Binary Search Strategy(DBSS).HBO is designed to convert continuous values into binary solutions,even for values outside the[0,1]range,ensuring accurate binary mapping.On the other hand,DBSS is a two-phase search strategy that enhances the performance of inferior search agents and accelerates convergence.By combining exploration and exploitation phases based on an adaptive probability function,DBSS effectively avoids local optima.The effectiveness of applying HBO is compared with five transfer function families and thresholding on 12 medical datasets,with feature numbers ranging from 8 to 10,509.IBQANA's effectiveness is evaluated regarding the accuracy,fitness,and selected features and compared with seven binary metaheuristic algorithms.Furthermore,IBQANA is utilized to detect COVID-19.The results reveal that the proposed IBQANA outperforms all comparative algorithms on COVID-19 and 11 other medical datasets.The proposed method presents a promising solution to the FSS problem in medical data preprocessing. 展开更多
关键词 Feature subset selection Optimization Binary metaheuristic algorithms BIOINSPIRED Machine learning medical datasets
原文传递
Towards Improving Predictive Statistical Learning Model Accuracy by Enhancing Learning Technique
4
作者 Ali Algarni Mahmoud Ragab +1 位作者 Wardah Alamri Samih MMostafa 《Computer Systems Science & Engineering》 SCIE EI 2022年第7期303-318,共16页
The accuracy of the statistical learning model depends on the learning technique used which in turn depends on the dataset’s values.In most research studies,the existence of missing values(MVs)is a vital problem.In a... The accuracy of the statistical learning model depends on the learning technique used which in turn depends on the dataset’s values.In most research studies,the existence of missing values(MVs)is a vital problem.In addition,any dataset with MVs cannot be used for further analysis or with any data driven tool especially when the percentage of MVs are high.In this paper,the authors propose a novel algorithm for dealing with MVs depending on the feature selec-tion(FS)of similarity classifier with fuzzy entropy measure.The proposed algo-rithm imputes MVs in cumulative order.The candidate feature to be manipulated is selected using similarity classifier with Parkash’s fuzzy entropy measure.The predictive model to predict MVs within the candidate feature is the Bayesian Ridge Regression(BRR)technique.Furthermore,any imputed features will be incorporated within the BRR equation to impute the MVs in the next chosen incomplete feature.The proposed algorithm was compared against some practical state-of-the-art imputation methods by conducting an experiment on four medical datasets which were gathered from several databases repository with MVs gener-ated from the three missingness mechanisms.The evaluation metrics of mean abso-lute error(MAE),root mean square error(RMSE)and coefficient of determination(R2 score)were used to measure the performance.The results exhibited that perfor-mance vary depending on the size of the dataset,amount of MVs and the missing-ness mechanism type.Moreover,compared to other methods,the results showed that the proposed method gives better accuracy and less error in most cases. 展开更多
关键词 Bayesian ridge regression fuzzy entropy measure feature selection IMPUTATION missing values missingness mechanisms similarity classifier medical dataset
下载PDF
A Novel Method Based on Nonlinear Binary Grasshopper Whale Optimization Algorithm for Feature Selection 被引量:5
5
作者 Lingling Fang Xiyue Liang 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第1期237-252,共16页
Feature Selection(FS)is considered as an important preprocessing step in data mining and is used to remove redundant or unrelated features from high-dimensional data.Most optimization algorithms for FS problems are no... Feature Selection(FS)is considered as an important preprocessing step in data mining and is used to remove redundant or unrelated features from high-dimensional data.Most optimization algorithms for FS problems are not balanced in search.A hybrid algorithm called nonlinear binary grasshopper whale optimization algorithm(NL-BGWOA)is proposed to solve the problem in this paper.In the proposed method,a new position updating strategy combining the position changes of whales and grasshoppers population is expressed,which optimizes the diversity of searching in the target domain.Ten distinct high-dimensional UCI datasets,the multi-modal Parkinson's speech datasets,and the COVID-19 symptom dataset are used to validate the proposed method.It has been demonstrated that the proposed NL-BGWOA performs well across most of high-dimensional datasets,which shows a high accuracy rate of up to 0.9895.Furthermore,the experimental results on the medical datasets also demonstrate the advantages of the proposed method in actual FS problem,including accuracy,size of feature subsets,and fitness with best values of 0.913,5.7,and 0.0873,respectively.The results reveal that the proposed NL-BGWOA has comprehensive superiority in solving the FS problem of high-dimensional data. 展开更多
关键词 Feature selection Hybrid bionic optimization algorithm Biomimetic position updating strategy Nature-inspired algorithm-High-dimensional UCI datasets-Multi-modal medical datasets
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部