In machine-vision-based systems for detecting foreign fibers, due to the background of the cotton layer has the absolute advantage in the whole image, while the foreign fiber only account for a very small part, and w...In machine-vision-based systems for detecting foreign fibers, due to the background of the cotton layer has the absolute advantage in the whole image, while the foreign fiber only account for a very small part, and what’s more, the brightness and contrast of the image are all poor. Using the traditional image segmentation method, the segmentation results are very poor. By adopting the maximum entropy and genetic algorithm, the maximum entropy function was used as the fitness function of genetic algorithm. Through continuous optimization, the optimal segmentation threshold is determined. Experimental results prove that the image segmentation of this paper not only fast and accurate, but also has strong adaptability.展开更多
In this paper, elitist reconstruction genetic algorithm (ERGA) based on Markov random field (MRF) is introduced for image segmentation. In this algorithm, a population of possible solutions is maintained at every ...In this paper, elitist reconstruction genetic algorithm (ERGA) based on Markov random field (MRF) is introduced for image segmentation. In this algorithm, a population of possible solutions is maintained at every generation, and for each solution a fitness value is calculated according to a fitness function, which is constructed based on the MRF potential function according to Metropolis function and Bayesian framework. After the improved selection, crossover and mutation, an elitist individual is restructured based on the strategy of restructuring elitist. This procedure is processed to select the location that denotes the largest MRF potential function value in the same location of all individuals. The algorithm is stopped when the change of fitness functions between two sequent generations is less than a specified value. Experiments show that the performance of the hybrid algorithm is better than that of some traditional algorithms.展开更多
Remote sensing image segmentation is the basis of image understanding and analysis. However,the precision and the speed of segmentation can not meet the need of image analysis,due to strong uncertainty and rich textur...Remote sensing image segmentation is the basis of image understanding and analysis. However,the precision and the speed of segmentation can not meet the need of image analysis,due to strong uncertainty and rich texture details of remote sensing images. We proposed a new segmentation method based on Adaptive Genetic Algorithm(AGA) and Alternative Fuzzy C-Means(AFCM) . Segmentation thresholds were identified by AGA. Then the image was segmented by AFCM. The results indicate that the precision and the speed of segmentation have been greatly increased,and the accuracy of threshold selection is much higher compared with traditional Otsu and Fuzzy C-Means(FCM) segmentation methods. The segmentation results also show that multi-thresholds segmentation has been achieved by combining AGA with AFCM.展开更多
This paper describes a new method for three-dimensional medical image registration. In the interactive image-guided HIFU ( High Intensity Focused Ultrasound) therapy system, a fast and precise localization of the tu...This paper describes a new method for three-dimensional medical image registration. In the interactive image-guided HIFU ( High Intensity Focused Ultrasound) therapy system, a fast and precise localization of the tumor is very important. An automatic system is developed for registering pre-operative MR images with intra-operative ultrasound images based on the vessels visible in both of the modalities. When the MR and the ultrasound images are aligned, the eenterline points of the vessels in the MR image will align with bright intensities in the ultrasound image. The method applies an optimization strategy combining the genetic algorithm with the conjugated gradients algorithm to minimize the objective function. It provides a feasible way of determining the global solution and makes the method robust to local maximum and insensitive to initial position. Two experiments were designed to evaluate the method, and the results show that our method has better registration accuracy and convergence rate than the other two classic algorithms.展开更多
As a mainstream research direction in the field of image segmentation,medical image segmentation plays a key role in the quantification of lesions,three-dimensional reconstruction,region of interest extraction and so ...As a mainstream research direction in the field of image segmentation,medical image segmentation plays a key role in the quantification of lesions,three-dimensional reconstruction,region of interest extraction and so on.Compared with natural images,medical images have a variety of modes.Besides,the emphasis of information which is conveyed by images of different modes is quite different.Because it is time-consuming and inefficient to manually segment medical images only by professional and experienced doctors.Therefore,large quantities of automated medical image segmentation methods have been developed.However,until now,researchers have not developed a universal method for all types of medical image segmentation.This paper reviews the literature on segmentation techniques that have produced major breakthroughs in recent years.Among the large quantities of medical image segmentation methods,this paper mainly discusses two categories of medical image segmentation methods.One is the improved strategies based on traditional clustering method.The other is the research progress of the improved image segmentation network structure model based on U-Net.The power of technology proves that the performance of the deep learning-based method is significantly better than that of the traditional method.This paper discussed both advantages and disadvantages of different algorithms and detailed how these methods can be used for the segmentation of lesions or other organs and tissues,as well as possible technical trends for future work.展开更多
In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dime...In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dimension in various features.The enhanced soft subspace clustering algorithm combines interclass separation and intraclass tightness information,which has strong results for image segmentation,but the clustering algorithm is vulnerable to noisy data and dependence on the initialized clustering center.However,the clustering algorithmis susceptible to the influence of noisydata and reliance on initializedclustering centers andfalls into a local optimum;the clustering effect is poor for brain MR images with unclear boundaries and noise effects.To address these problems,a soft subspace clustering algorithm for brain MR images based on genetic algorithm optimization is proposed,which combines the generalized noise technique,relaxes the equational weight constraint in the objective function as the boundary constraint,and uses a genetic algorithm as a method to optimize the initialized clustering center.The genetic algorithm finds the best clustering center and reduces the algorithm’s dependence on the initial clustering center.The experiment verifies the robustness of the algorithm,as well as the noise immunity in various ways and shows good results on the common dataset and the brain MR images provided by the Changshu First People’s Hospital with specific high accuracy for clinical medicine.展开更多
Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results ...Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results In our approach, the segmentation problem was formulated as an optimization problem and the fitness of GA which can efficiently search the segmentation parameter space was regarded as the quality criterion. Conclusion The methodcan be adapted for optimal behold segmentation.展开更多
Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The pro...Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The proposed method uses both the gray value of a pixel and the local average gray value of an image. At the same time, the simple genetic algorithm is improved by using better reproduction and crossover operators. Thus the proposed method makes up the 2 D entropy method’s drawback of being time consuming, and yields satisfactory segmentation results. Experimental results show that the proposed method can save computational time when it provides good quality segmentation.展开更多
In medical image segmentation,it is often necessary to collect opinions from multiple experts to make the final decision.This clinical routine helps to mitigate individual bias.However,when data is annotated by multip...In medical image segmentation,it is often necessary to collect opinions from multiple experts to make the final decision.This clinical routine helps to mitigate individual bias.However,when data is annotated by multiple experts,standard deep learning models are often not applicable.In this paper,we propose a novel neural network framework called Multi-rater Prism(MrPrism)to learn medical image segmentation from multiple labels.Inspired by iterative half-quadratic optimization,MrPrism combines the task of assigning multi-rater confidences and calibrated segmentation in a recurrent manner.During this process,MrPrism learns inter-observer variability while taking into account the image's semantic properties and finally converges to a self-calibrated segmentation result reflecting inter-observer agreement.Specifically,we propose Converging Prism(ConP)and Diverging Prism(DivP)to iteratively process the two tasks.ConP learns calibrated segmentation based on multi-rater confidence maps estimated by DivP,and DivP generates multi-rater confidence maps based on segmentation masks estimated by ConP.Experimental results show that the two tasks can mutually improve each other through this recurrent process.The final converged segmentation result of MrPrism outperforms state-of-the-art(SOTA)methods for a wide range of medical image segmentation tasks.The code is available at https://github.-com/WuJunde/MrPrism.展开更多
Medical image segmentation is a challenging task especially in multimodality medical image analysis.In this paper,an improved pulse coupled neural network based on multiple hybrid features grey wolf optimizer(MFGWO-PC...Medical image segmentation is a challenging task especially in multimodality medical image analysis.In this paper,an improved pulse coupled neural network based on multiple hybrid features grey wolf optimizer(MFGWO-PCNN)is proposed for multimodality medical image segmentation.Specifically,a two-stage medical image segmentation method based on bionic algorithm is presented,including image fusion and image segmentation.The image fusion stage fuses rich information from different modalities by utilizing a multimodality medical image fusion model based on maximum energy region.In the stage of image segmentation,an improved PCNN model based on MFGWO is proposed,which can adaptively set the parameters of PCNN according to the features of the image.Two modalities of FLAIR and TIC brain MRIs are applied to verify the effectiveness of the proposed MFGWO-PCNN algorithm.The experimental results demonstrate that the proposed method outperforms the other seven algorithms in subjective vision and objective evaluation indicators.展开更多
In this paper, a new medical image classification scheme is proposed using selforganizing map (SOM) combined with multiscale technique. It addresses the problem of the handling of edge pixels in the traditional multis...In this paper, a new medical image classification scheme is proposed using selforganizing map (SOM) combined with multiscale technique. It addresses the problem of the handling of edge pixels in the traditional multiscale SOM classifiers. First, to solve the difficulty in manual selection of edge pixels, a multiscale edge detection algorithm based on wavelet transform is proposed. Edge pixels detected are then selected into the training set as a new class and a mu1tiscale SoM classifier is trained using this training set. In this new scheme, the SoM classifier can perform both the classification on the entire image and the edge detection simultaneously. On the other hand, the misclassification of the traditional multiscale SoM classifier in regions near edges is greatly reduced and the correct classification is improved at the same time.展开更多
The problems of installation and integration of complex suite of software for processing medical images. Based analysis of the situation is realized in an easier integration of an automated system using the latest inf...The problems of installation and integration of complex suite of software for processing medical images. Based analysis of the situation is realized in an easier integration of an automated system using the latest information technologies using the web - environment for analysis and segmentation of DICOM - images.展开更多
Segmenting the Dynamic Contrast-Enhanced Breast Magnetic Resonance Images(DCE-BMRI)is an extremely important task to diagnose the disease because it has the highest specificity when acquired with high temporal and spa...Segmenting the Dynamic Contrast-Enhanced Breast Magnetic Resonance Images(DCE-BMRI)is an extremely important task to diagnose the disease because it has the highest specificity when acquired with high temporal and spatial resolution and is also corrupted by heavy noise,outliers,and other imaging artifacts.In this paper,we intend to develop efficient robust segmentation algorithms based on fuzzy clustering approach for segmenting the DCE-BMRs.Our proposed segmentation algorithms have been amalgamated with effective kernel-induced distance measure on standard fuzzy c-means algorithm along with the spatial neighborhood information,entropy term,and tolerance vector into a fuzzy clustering structure for segmenting the DCE-BMRI.The significant feature of our proposed algorithms is its capability tofind the optimal membership grades and obtain effective cluster centers automatically by minimizing the proposed robust objective functions.Also,this article demonstrates the superiority of the proposed algorithms for segmenting DCE-BMRI in comparison with other recent kernel-based fuzzy c-means techniques.Finally the clustering accuracies of the proposed algorithms are validated by using silhouette method in comparison with existed fuzzy clustering algorithms.展开更多
The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical image...The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical imageprocessing while focusing on lung cancer Computed Tomography (CT) images. In this context, the paper proposesan improved lung cancer segmentation technique based on the strengths of nature-inspired approaches. Thebetter resolution of CT is exploited to distinguish healthy subjects from those who have lung cancer. In thisprocess, the visual challenges of the K-means are addressed with the integration of four nature-inspired swarmintelligent techniques. The techniques experimented in this paper are K-means with Artificial Bee Colony (ABC),K-means with Cuckoo Search Algorithm (CSA), K-means with Particle Swarm Optimization (PSO), and Kmeanswith Firefly Algorithm (FFA). The testing and evaluation are performed on Early Lung Cancer ActionProgram (ELCAP) database. The simulation analysis is performed using lung cancer images set against metrics:precision, sensitivity, specificity, f-measure, accuracy,Matthews Correlation Coefficient (MCC), Jaccard, and Dice.The detailed evaluation shows that the K-means with Cuckoo Search Algorithm (CSA) significantly improved thequality of lung cancer segmentation in comparison to the other optimization approaches utilized for lung cancerimages. The results exhibit that the proposed approach (K-means with CSA) achieves precision, sensitivity, and Fmeasureof 0.942, 0.964, and 0.953, respectively, and an average accuracy of 93%. The experimental results prove thatK-meanswithABC,K-meanswith PSO,K-meanswith FFA, andK-meanswithCSAhave achieved an improvementof 10.8%, 13.38%, 13.93%, and 15.7%, respectively, for accuracy measure in comparison to K-means segmentationfor lung cancer images. Further, it is highlighted that the proposed K-means with CSA have achieved a significantimprovement in accuracy, hence can be utilized by researchers for improved segmentation processes of medicalimage datasets for identifying the targeted region of interest.展开更多
In landmark-based image registration, estimating the landmark correspondence plays an important role. In this letter, a novel landmark correspondence estimation technique using mean shift algorithm is proposed. Image ...In landmark-based image registration, estimating the landmark correspondence plays an important role. In this letter, a novel landmark correspondence estimation technique using mean shift algorithm is proposed. Image corner points are detected as landmarks and mean shift iterations are adopted to find the most probable corresponding point positions in two images. Mutual information between intensity of two local regions is computed to eliminate mis-matching points to improve the stability of corresponding estimation correspondence landmarks is exact. The proposed experiments of various mono-modal medical images. Multi-level estimation (MLE) technique is proposed Experiments show that the precision in location of technique is shown to be feasible and rapid in the展开更多
Medical imaging is now being reshaped by artificial intelligence (AI) and progressing rapidly toward future.In this article,we review the recent progress of AI-enabled medical imaging.Firstly,we briefly review the bac...Medical imaging is now being reshaped by artificial intelligence (AI) and progressing rapidly toward future.In this article,we review the recent progress of AI-enabled medical imaging.Firstly,we briefly review the background about AI in its way of evolution.Then,we discuss the recent successes of AI in different medical imaging tasks,especially in image segmentation,registration,detection and recognition.Also,we illustrate several representative applications of AI-enabled medical imaging to show its advantage in real scenario,which includes lung nodule in chest CT,neuroimaging,mammography,and etc.Finally,we report the way of human-machine interaction.We believe that,in the future,AI will not only change the traditional way of medical imaging,but also improve the clinical routines of medical care and enable many aspects of the medical society.展开更多
文摘In machine-vision-based systems for detecting foreign fibers, due to the background of the cotton layer has the absolute advantage in the whole image, while the foreign fiber only account for a very small part, and what’s more, the brightness and contrast of the image are all poor. Using the traditional image segmentation method, the segmentation results are very poor. By adopting the maximum entropy and genetic algorithm, the maximum entropy function was used as the fitness function of genetic algorithm. Through continuous optimization, the optimal segmentation threshold is determined. Experimental results prove that the image segmentation of this paper not only fast and accurate, but also has strong adaptability.
文摘In this paper, elitist reconstruction genetic algorithm (ERGA) based on Markov random field (MRF) is introduced for image segmentation. In this algorithm, a population of possible solutions is maintained at every generation, and for each solution a fitness value is calculated according to a fitness function, which is constructed based on the MRF potential function according to Metropolis function and Bayesian framework. After the improved selection, crossover and mutation, an elitist individual is restructured based on the strategy of restructuring elitist. This procedure is processed to select the location that denotes the largest MRF potential function value in the same location of all individuals. The algorithm is stopped when the change of fitness functions between two sequent generations is less than a specified value. Experiments show that the performance of the hybrid algorithm is better than that of some traditional algorithms.
基金Under the auspices of National Natural Science Foundation of China (No. 30370267)Key Project of Jilin Provincial Science & Technology Department (No. 20075014)
文摘Remote sensing image segmentation is the basis of image understanding and analysis. However,the precision and the speed of segmentation can not meet the need of image analysis,due to strong uncertainty and rich texture details of remote sensing images. We proposed a new segmentation method based on Adaptive Genetic Algorithm(AGA) and Alternative Fuzzy C-Means(AFCM) . Segmentation thresholds were identified by AGA. Then the image was segmented by AFCM. The results indicate that the precision and the speed of segmentation have been greatly increased,and the accuracy of threshold selection is much higher compared with traditional Otsu and Fuzzy C-Means(FCM) segmentation methods. The segmentation results also show that multi-thresholds segmentation has been achieved by combining AGA with AFCM.
文摘This paper describes a new method for three-dimensional medical image registration. In the interactive image-guided HIFU ( High Intensity Focused Ultrasound) therapy system, a fast and precise localization of the tumor is very important. An automatic system is developed for registering pre-operative MR images with intra-operative ultrasound images based on the vessels visible in both of the modalities. When the MR and the ultrasound images are aligned, the eenterline points of the vessels in the MR image will align with bright intensities in the ultrasound image. The method applies an optimization strategy combining the genetic algorithm with the conjugated gradients algorithm to minimize the objective function. It provides a feasible way of determining the global solution and makes the method robust to local maximum and insensitive to initial position. Two experiments were designed to evaluate the method, and the results show that our method has better registration accuracy and convergence rate than the other two classic algorithms.
基金supported partly by the Open Project of State Key Laboratory of Millimeter Wave under Grant K202218partly by Innovation and Entrepreneurship Training Program of College Students under Grants 202210700006Y and 202210700005Z.
文摘As a mainstream research direction in the field of image segmentation,medical image segmentation plays a key role in the quantification of lesions,three-dimensional reconstruction,region of interest extraction and so on.Compared with natural images,medical images have a variety of modes.Besides,the emphasis of information which is conveyed by images of different modes is quite different.Because it is time-consuming and inefficient to manually segment medical images only by professional and experienced doctors.Therefore,large quantities of automated medical image segmentation methods have been developed.However,until now,researchers have not developed a universal method for all types of medical image segmentation.This paper reviews the literature on segmentation techniques that have produced major breakthroughs in recent years.Among the large quantities of medical image segmentation methods,this paper mainly discusses two categories of medical image segmentation methods.One is the improved strategies based on traditional clustering method.The other is the research progress of the improved image segmentation network structure model based on U-Net.The power of technology proves that the performance of the deep learning-based method is significantly better than that of the traditional method.This paper discussed both advantages and disadvantages of different algorithms and detailed how these methods can be used for the segmentation of lesions or other organs and tissues,as well as possible technical trends for future work.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 62171203in part by the Suzhou Key Supporting Subjects[Health Informatics(No.SZFCXK202147)]+2 种基金in part by the Changshu Science and Technology Program[No.CS202015,CS202246]in part by the Changshu City Health and Health Committee Science and Technology Program[No.csws201913]in part by the“333 High Level Personnel Training Project of Jiangsu Province”.
文摘In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dimension in various features.The enhanced soft subspace clustering algorithm combines interclass separation and intraclass tightness information,which has strong results for image segmentation,but the clustering algorithm is vulnerable to noisy data and dependence on the initialized clustering center.However,the clustering algorithmis susceptible to the influence of noisydata and reliance on initializedclustering centers andfalls into a local optimum;the clustering effect is poor for brain MR images with unclear boundaries and noise effects.To address these problems,a soft subspace clustering algorithm for brain MR images based on genetic algorithm optimization is proposed,which combines the generalized noise technique,relaxes the equational weight constraint in the objective function as the boundary constraint,and uses a genetic algorithm as a method to optimize the initialized clustering center.The genetic algorithm finds the best clustering center and reduces the algorithm’s dependence on the initial clustering center.The experiment verifies the robustness of the algorithm,as well as the noise immunity in various ways and shows good results on the common dataset and the brain MR images provided by the Changshu First People’s Hospital with specific high accuracy for clinical medicine.
文摘Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results In our approach, the segmentation problem was formulated as an optimization problem and the fitness of GA which can efficiently search the segmentation parameter space was regarded as the quality criterion. Conclusion The methodcan be adapted for optimal behold segmentation.
文摘Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The proposed method uses both the gray value of a pixel and the local average gray value of an image. At the same time, the simple genetic algorithm is improved by using better reproduction and crossover operators. Thus the proposed method makes up the 2 D entropy method’s drawback of being time consuming, and yields satisfactory segmentation results. Experimental results show that the proposed method can save computational time when it provides good quality segmentation.
基金supported by the Excellent Young Science and Technology Talent Cultivation Special Project of China Academy of Chinese Medical Sciences(CI2023D006)the National Natural Science Foundation of China(82121003 and 82022076)+2 种基金Beijing Natural Science Foundation(2190023)Shenzhen Fundamental Research Program(JCYJ20220818103207015)Guangdong Provincial Key Laboratory of Human Digital Twin(2022B1212010004)。
文摘In medical image segmentation,it is often necessary to collect opinions from multiple experts to make the final decision.This clinical routine helps to mitigate individual bias.However,when data is annotated by multiple experts,standard deep learning models are often not applicable.In this paper,we propose a novel neural network framework called Multi-rater Prism(MrPrism)to learn medical image segmentation from multiple labels.Inspired by iterative half-quadratic optimization,MrPrism combines the task of assigning multi-rater confidences and calibrated segmentation in a recurrent manner.During this process,MrPrism learns inter-observer variability while taking into account the image's semantic properties and finally converges to a self-calibrated segmentation result reflecting inter-observer agreement.Specifically,we propose Converging Prism(ConP)and Diverging Prism(DivP)to iteratively process the two tasks.ConP learns calibrated segmentation based on multi-rater confidence maps estimated by DivP,and DivP generates multi-rater confidence maps based on segmentation masks estimated by ConP.Experimental results show that the two tasks can mutually improve each other through this recurrent process.The final converged segmentation result of MrPrism outperforms state-of-the-art(SOTA)methods for a wide range of medical image segmentation tasks.The code is available at https://github.-com/WuJunde/MrPrism.
基金This research is supported by the National Key Research and Development Program of China(2018YFB0804202,2018YFB0804203)Regional Joint Fund of NSFC(U19A2057),the National Natural Science Foundation of China(61672259,61876070)and the Jilin Province Science and Technology Development Plan Project(20190303134SF,20180201064SF).
文摘Medical image segmentation is a challenging task especially in multimodality medical image analysis.In this paper,an improved pulse coupled neural network based on multiple hybrid features grey wolf optimizer(MFGWO-PCNN)is proposed for multimodality medical image segmentation.Specifically,a two-stage medical image segmentation method based on bionic algorithm is presented,including image fusion and image segmentation.The image fusion stage fuses rich information from different modalities by utilizing a multimodality medical image fusion model based on maximum energy region.In the stage of image segmentation,an improved PCNN model based on MFGWO is proposed,which can adaptively set the parameters of PCNN according to the features of the image.Two modalities of FLAIR and TIC brain MRIs are applied to verify the effectiveness of the proposed MFGWO-PCNN algorithm.The experimental results demonstrate that the proposed method outperforms the other seven algorithms in subjective vision and objective evaluation indicators.
文摘In this paper, a new medical image classification scheme is proposed using selforganizing map (SOM) combined with multiscale technique. It addresses the problem of the handling of edge pixels in the traditional multiscale SOM classifiers. First, to solve the difficulty in manual selection of edge pixels, a multiscale edge detection algorithm based on wavelet transform is proposed. Edge pixels detected are then selected into the training set as a new class and a mu1tiscale SoM classifier is trained using this training set. In this new scheme, the SoM classifier can perform both the classification on the entire image and the edge detection simultaneously. On the other hand, the misclassification of the traditional multiscale SoM classifier in regions near edges is greatly reduced and the correct classification is improved at the same time.
文摘The problems of installation and integration of complex suite of software for processing medical images. Based analysis of the situation is realized in an easier integration of an automated system using the latest information technologies using the web - environment for analysis and segmentation of DICOM - images.
基金This work was supported by DG CSIR(Ref.No.:39-35/2010(SR)),India.
文摘Segmenting the Dynamic Contrast-Enhanced Breast Magnetic Resonance Images(DCE-BMRI)is an extremely important task to diagnose the disease because it has the highest specificity when acquired with high temporal and spatial resolution and is also corrupted by heavy noise,outliers,and other imaging artifacts.In this paper,we intend to develop efficient robust segmentation algorithms based on fuzzy clustering approach for segmenting the DCE-BMRs.Our proposed segmentation algorithms have been amalgamated with effective kernel-induced distance measure on standard fuzzy c-means algorithm along with the spatial neighborhood information,entropy term,and tolerance vector into a fuzzy clustering structure for segmenting the DCE-BMRI.The significant feature of our proposed algorithms is its capability tofind the optimal membership grades and obtain effective cluster centers automatically by minimizing the proposed robust objective functions.Also,this article demonstrates the superiority of the proposed algorithms for segmenting DCE-BMRI in comparison with other recent kernel-based fuzzy c-means techniques.Finally the clustering accuracies of the proposed algorithms are validated by using silhouette method in comparison with existed fuzzy clustering algorithms.
基金the Researchers Supporting Project(RSP2023R395),King Saud University,Riyadh,Saudi Arabia.
文摘The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical imageprocessing while focusing on lung cancer Computed Tomography (CT) images. In this context, the paper proposesan improved lung cancer segmentation technique based on the strengths of nature-inspired approaches. Thebetter resolution of CT is exploited to distinguish healthy subjects from those who have lung cancer. In thisprocess, the visual challenges of the K-means are addressed with the integration of four nature-inspired swarmintelligent techniques. The techniques experimented in this paper are K-means with Artificial Bee Colony (ABC),K-means with Cuckoo Search Algorithm (CSA), K-means with Particle Swarm Optimization (PSO), and Kmeanswith Firefly Algorithm (FFA). The testing and evaluation are performed on Early Lung Cancer ActionProgram (ELCAP) database. The simulation analysis is performed using lung cancer images set against metrics:precision, sensitivity, specificity, f-measure, accuracy,Matthews Correlation Coefficient (MCC), Jaccard, and Dice.The detailed evaluation shows that the K-means with Cuckoo Search Algorithm (CSA) significantly improved thequality of lung cancer segmentation in comparison to the other optimization approaches utilized for lung cancerimages. The results exhibit that the proposed approach (K-means with CSA) achieves precision, sensitivity, and Fmeasureof 0.942, 0.964, and 0.953, respectively, and an average accuracy of 93%. The experimental results prove thatK-meanswithABC,K-meanswith PSO,K-meanswith FFA, andK-meanswithCSAhave achieved an improvementof 10.8%, 13.38%, 13.93%, and 15.7%, respectively, for accuracy measure in comparison to K-means segmentationfor lung cancer images. Further, it is highlighted that the proposed K-means with CSA have achieved a significantimprovement in accuracy, hence can be utilized by researchers for improved segmentation processes of medicalimage datasets for identifying the targeted region of interest.
基金supported by the National Natural Science Foundation of China under Grant No.60572101
文摘In landmark-based image registration, estimating the landmark correspondence plays an important role. In this letter, a novel landmark correspondence estimation technique using mean shift algorithm is proposed. Image corner points are detected as landmarks and mean shift iterations are adopted to find the most probable corresponding point positions in two images. Mutual information between intensity of two local regions is computed to eliminate mis-matching points to improve the stability of corresponding estimation correspondence landmarks is exact. The proposed experiments of various mono-modal medical images. Multi-level estimation (MLE) technique is proposed Experiments show that the precision in location of technique is shown to be feasible and rapid in the
文摘Medical imaging is now being reshaped by artificial intelligence (AI) and progressing rapidly toward future.In this article,we review the recent progress of AI-enabled medical imaging.Firstly,we briefly review the background about AI in its way of evolution.Then,we discuss the recent successes of AI in different medical imaging tasks,especially in image segmentation,registration,detection and recognition.Also,we illustrate several representative applications of AI-enabled medical imaging to show its advantage in real scenario,which includes lung nodule in chest CT,neuroimaging,mammography,and etc.Finally,we report the way of human-machine interaction.We believe that,in the future,AI will not only change the traditional way of medical imaging,but also improve the clinical routines of medical care and enable many aspects of the medical society.