The main protease(M^(pro))of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle.The covalent M^(pro)inhibitor nirmatrelvir(in combination with ...The main protease(M^(pro))of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle.The covalent M^(pro)inhibitor nirmatrelvir(in combination with ritonavir,a pharmacokinetic enhancer)and the non-covalent inhibitor ensitrelvir have shown efficacy in clinical trials and have been approved for therapeutic use.Effective antiviral drugs are needed to fight the pandemic,while non-covalent M^(pro)inhibitors could be promising alternatives due to their high selectivity and favorable druggability.Numerous non-covalent M^(pro)inhibitors with desirable properties have been developed based on available crystal structures of M^(pro).In this article,we describe medicinal chemistry strategies applied for the discovery and optimization of non-covalent M^(pro)inhibitors,followed by a general overview and critical analysis of the available information.Prospective viewpoints and insights into current strategies for the development of non-covalent M^(pro)inhibitors are also discussed.展开更多
Despite the improving coverage of preventative vaccines,hepatitis B remains a severe global public health problem,with more than 250 million patients living with hepatitis B virus(HBV)infection.Current available thera...Despite the improving coverage of preventative vaccines,hepatitis B remains a severe global public health problem,with more than 250 million patients living with hepatitis B virus(HBV)infection.Current available therapies,including nucleos(t)ide analogs and peginterferon,can control HBV replication but fail to eliminate covalently closed circular DNA(cccDNA)and achieve a cure.The HBV core protein(Cp)is a well-conserved structural protein,self-assembling to form the viral capsid.It involves in or modulates almost every stage of the HBV lifecycle,which makes it an attractive target for the development of new anti-HBV therapies.HBV core protein allosteric modulators(CpAMs)have become a hotspot in recent years.Herein,we provide a concise report focusing on the various medicinal chemistry strategies involved in the latest research(2018-2022)of HBV CpAMs,including high throughput screening(HTS),virtual screening(VS),drug repositioning,natural products,substitution decorating approach,scaffold hopping,molecular hybridization,prodrug strategy and conformational constraint strategy,to provide guidance for further development of new and effective anti-HBV drugs.展开更多
Novel therapies are urgently needed to improve global treatment of SARS-CoV-2 infection.Herein,we briefly provide a concise report on the medicinal chemistry strategies towards the development of effective SARS-CoV-2 ...Novel therapies are urgently needed to improve global treatment of SARS-CoV-2 infection.Herein,we briefly provide a concise report on the medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors with representative examples in different strategies from the medicinal chemistry perspective.展开更多
基金We gratefully acknowledge financial support from Major Basic Research Project of Shandong Provincial Natural Science Foundation(ZR2021ZD17,China)Science Foundation for Outstanding Young Scholars of Shandong Province(ZR2020JQ31,China)+4 种基金Foreign Cultural and Educational Experts Project(GXL20200015001,China)Guangdong Basic and Applied Basic Research Foundation(2021A1515110740,China)China Postdoctoral Science Foundation(2021M702003)This work was supported in part by the Ministry of Science and Innovation of Spain through grant PID2019-104176RBI00/AEI/10.13039/501100011033 awarded to Luis Menéndez-AriasAn institutional grant of the Fundación Ramón Areces(Madrid,Spain)to the CBMSO is also acknowledged.Luis Menéndez-Arias is member of the Global Virus Network.
文摘The main protease(M^(pro))of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle.The covalent M^(pro)inhibitor nirmatrelvir(in combination with ritonavir,a pharmacokinetic enhancer)and the non-covalent inhibitor ensitrelvir have shown efficacy in clinical trials and have been approved for therapeutic use.Effective antiviral drugs are needed to fight the pandemic,while non-covalent M^(pro)inhibitors could be promising alternatives due to their high selectivity and favorable druggability.Numerous non-covalent M^(pro)inhibitors with desirable properties have been developed based on available crystal structures of M^(pro).In this article,we describe medicinal chemistry strategies applied for the discovery and optimization of non-covalent M^(pro)inhibitors,followed by a general overview and critical analysis of the available information.Prospective viewpoints and insights into current strategies for the development of non-covalent M^(pro)inhibitors are also discussed.
基金financial support from the National Natural Science Foundation of China(NSFC Nos.82173677,82211530493)the Science Foundation for Outstanding Young Scholars of Shandong Province(No.ZR2020JQ31).
文摘Despite the improving coverage of preventative vaccines,hepatitis B remains a severe global public health problem,with more than 250 million patients living with hepatitis B virus(HBV)infection.Current available therapies,including nucleos(t)ide analogs and peginterferon,can control HBV replication but fail to eliminate covalently closed circular DNA(cccDNA)and achieve a cure.The HBV core protein(Cp)is a well-conserved structural protein,self-assembling to form the viral capsid.It involves in or modulates almost every stage of the HBV lifecycle,which makes it an attractive target for the development of new anti-HBV therapies.HBV core protein allosteric modulators(CpAMs)have become a hotspot in recent years.Herein,we provide a concise report focusing on the various medicinal chemistry strategies involved in the latest research(2018-2022)of HBV CpAMs,including high throughput screening(HTS),virtual screening(VS),drug repositioning,natural products,substitution decorating approach,scaffold hopping,molecular hybridization,prodrug strategy and conformational constraint strategy,to provide guidance for further development of new and effective anti-HBV drugs.
基金financial support from the Shandong Provincial Key Research and Development Project(No.2019JZZY021011,China)Foreign Cultural and Educational Experts Project(GXL20200015001,China)+1 种基金Outstanding Youth Fund of Shandong Province(ZR2020JQ31,China)Qilu Young Scholars Program of Shandong University and the Taishan Scholar Program at Shandong Province。
文摘Novel therapies are urgently needed to improve global treatment of SARS-CoV-2 infection.Herein,we briefly provide a concise report on the medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors with representative examples in different strategies from the medicinal chemistry perspective.