Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd ju...Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd juices were investigated. Results showed that the processing factors such as pressure, temperature, pH and processing time are important to the POD activity. POD in crude juices could be inactivated apparently above 50 MPa(pH 4.6, 35℃, 4 min), and activated at 20 MPa ( P < 0.01). Its remarkable inactivation could also be observed at 45 and 55℃ (20 MPa, pH 4.6, 4 min), and the evident activation appears at the material temperature 35℃ ( P < 0.01). The pH 3.0 could destroy POD almost completely (20 MPa, 35℃, 4 min), while pH 6.0 could not influence apparently the POD activity in crude juices( P > 0.05). In addition, the rules of POD activity along with the treatment time are variational under different processing pressures. The higher the treating pressure is, the shorter the processing time is needed to inactivate POD.展开更多
The transformation of the energy supply needs further development of energy storage technologies in order to integrate the fluctuating renewable energy. The conversion of renewable wind power into green methane offers...The transformation of the energy supply needs further development of energy storage technologies in order to integrate the fluctuating renewable energy. The conversion of renewable wind power into green methane offers a technical approach with the necessary storage and transport capacities. Thus, the concept of Power-to-Gas which is illustrated here by the coupling of wind energy with a High Temperature Steam Electrolyser (HTSE) and a methanation unit enabling the production of green fuel like hydrogen and methane is presented is this paper. In fact, hydrogen can be used as energy carrier as well for the production of green fuels, like methane which is simpler to store and to transport and which can be thus used as storage medium for the stabilization of the electrical power supply as well as fuel for transport and heat sector. Its production using high temperature electrolysis is able to reduce the carbon dioxide emissions if performed with renewable resources. This is the case if the electricity needed for the HTSE comes from a wind turbine and the CO2 needed for the methanation step comes from biogas. For such a plant, the location and the boundary conditions have a great importance. Thus, this study considers the coupling of a HTSE with a wind turbine and a methanation reactor, and focuses about the site selection, depending of the geographical and economic considerations. The study is limited first to the European area. Schleswig-Holstein is found as a very good location for this plant. It is one of the regions with the largest wind reserves in Germany. This region has also available a lot of biogas and meets all the other necessary requirements.展开更多
Based on the instantaneous high-pressure(IHP)produced by high-pressure single pole-cylinder pump, the effects of combining this pressure with medium temperature on the retention of total vitamin C(Vc)in wax gourd juic...Based on the instantaneous high-pressure(IHP)produced by high-pressure single pole-cylinder pump, the effects of combining this pressure with medium temperature on the retention of total vitamin C(Vc)in wax gourd juices were investigated under 20 - 80 MPa, 35 - 58℃, pH 3. 0 - 6. 0 and processing time 0-8 min. Results showed that the loss of Vc increased with elevated processing temperatures(50 MPa, 4 min). When the temperature of raw juices was 35℃, the retention of total Vc was higher under 40 - 60 MPa than that under the pressure < 40 MPa or > 60 MPa, and it was up to 94%(4 min). The retention of total Vc decreases slowly within 6 min, but rapidly after 6 min. The pH can also influence the retention of total Vc, and this retention can come to a highest point at pH 6.0.展开更多
The production of environment friendly green fuels is based on energy from renewable sources. Among the renewable sources, wind power is a very growing power technology. An example which has been discussed very widely...The production of environment friendly green fuels is based on energy from renewable sources. Among the renewable sources, wind power is a very growing power technology. An example which has been discussed very widely is hydrogen which is an ideal fuel for a fuel cell. Hydrogen is the energy of the future. It will be used as energy carrier as well as reactant to produce green fuels, like methane which is easier to handle. Direct coupling of a High Temperature Steam Electrolyser (HTSE) with a wind turbine can be used to generate hydrogen. Indeed performing the electrolysis process at high temperatures offers the advantage of achieving higher efficiencies compared to the conventional water electrolysis. The hydrogen produced can be then reacted with the CO2 content of biogas to form methane as green fuel. Thus, the concept presented in this paper illustrates the potential of the HTSE technology coupled with a wind turbine, this system being combined with biogas in a methanation unit. Developing scenarios and flow sheets and using mass and energy balance, the technical performance of the concept is investigated. A plant capacity of 10 MWel is considered. An annual production of 1104 metric tons per year (Mt/a) hydrogen and thus of 5888 Mt/a methane is reached. The overall plant efficiency is calculated to be 38%. The combination of wind power and biogas offers thus many advantages which can facilitate the penetration of the wind resource and the progression to the hydrogen economy.展开更多
Oxidation characteristics of Alloy 617 and Haynes 230 at 900 oC in simulated helium environment,hot steam environment containing H2 as well as in air and pure helium conditions were investigated.Compared to air condit...Oxidation characteristics of Alloy 617 and Haynes 230 at 900 oC in simulated helium environment,hot steam environment containing H2 as well as in air and pure helium conditions were investigated.Compared to air condition,the oxidation rate of Alloy 617 was not significantly affected in helium and hot steam environments,while Haynes 230 showed lower oxidation rate in helium environment.On the other hand,the oxide morphology and structure of Alloy 617 were strongly affected by the environments,but those of Haynes 230 were less dependent on the environments.For Haynes 230,a Cr2O3 inner layer and a protective MnCr2O4 outer layer were formed in all environments,which contributed to the better oxidation resistance.As the mechanical properties,such as creep and tensile properties,were significantly affected by the oxidation behaviors,surface treatment methods to enhance oxidation resistance of these alloys should be developed.展开更多
High Temperature Steam Electrolysis (HTSE) through a solid oxide electrolytic cell (SOEC) has been receiving increasing research and development attention worldwide because of its high conversion efficiency (about 45%...High Temperature Steam Electrolysis (HTSE) through a solid oxide electrolytic cell (SOEC) has been receiving increasing research and development attention worldwide because of its high conversion efficiency (about 45%-59%) and its potential usage for large-scale production of hydrogen. The mechanism, composition, structure, and developing challenges of SOEC are summarized. Current situation, key materials, and core technologies of SOEC (solid oxide electrolytic cell) in HTSE are re- viewed, and the prospect of HTSE future application in advanced energy fields is proposed. In addition, the recent research achievements and study progress of HTSE in Tsinghua University are also intro- duced and presented.展开更多
Redox-active Mn is introduced into the B site of redox-stable perovskite niobate-titanate to improve the electrocatalytic activity of composite cathode in an oxide-ion-conducting solid oxide electrolyzer. The XRD and ...Redox-active Mn is introduced into the B site of redox-stable perovskite niobate-titanate to improve the electrocatalytic activity of composite cathode in an oxide-ion-conducting solid oxide electrolyzer. The XRD and XPS results reveal the successful partial replacement of Ti/Nb by Mn in the B site of niobate-titanate. The ionic conductivities of the Mndoped niobate-titanate are significantly improved by approximately 1 order of magnitude in reducing atmosphere and 0.5 order of magnitude in oxidizing atmosphere compared with bare niobate-titanate at 800 ℃. The current efficiency for Mn-doped niobate-titanate cathode is accordingly enhanced by ,-25% and 30% in contrast to the bare cathode with and without reducing gas flowing over the cathode under the applied voltage of 2.0 V at 800 ℃ in an oxide-ion-conducting solid oxide electrolyzer, respectively.展开更多
Two kinds of silver based medium temperature brazing filler metals(45AgCuZnSn and 60AgCuSn) were selected to braze and seal brass flange pipe and copper pipe by high frequency heating brazing. In this paper, the quali...Two kinds of silver based medium temperature brazing filler metals(45AgCuZnSn and 60AgCuSn) were selected to braze and seal brass flange pipe and copper pipe by high frequency heating brazing. In this paper, the quality of the braze was evaluated by immersion ultrasound, and the microstructure of the brazed joint was observed by SEM and EDS. The experimental results show that the high frequency heating brazing can quickly achieve the device sealing;through the ultrasonic flaw detection image calculation, the brazed bonding rate obtained by 60AgCuSn brazing is 87%, and by 45AgCuZnSn brazing is 71%;the cross-sectional area of the brazed joint obtained by two kinds of silver based medium temperature brazing filler metals is observed, the brazed joint obtained by 45AgCuZnSn brazing has defects visual, and a large amount of Zn element gathered in the defects, there is no obvious porosity in the brazed joint by 60AgCuSn brazing,and the bonding layer is dense and coherent. Through the contrast test, the choice of 60AgCuSn alloy brazing can meet the needs of high frequency brazing of brass flange pipe and copper pipe.展开更多
For steam tubes used in thermal power plant,the inner and outer walls were operated in high-temperature steam and flue gas environments respectively.In this study,structure,microstructure and chemical composition of o...For steam tubes used in thermal power plant,the inner and outer walls were operated in high-temperature steam and flue gas environments respectively.In this study,structure,microstructure and chemical composition of oxide films on inner and outer walls of exservice low Cr ferritic steel G102 tube and exservice high Cr ferritic steel T91 tube were analyzed.The oxide film was composed of outer oxide layer,inner oxide layer and internal oxidation zone.The outer oxide layer on the original surface of tube had a porous structure containing Fe oxides formed by diffusion and oxidation of Fe.More specially,the outer oxide layer formed in flue gas environment would mix with coal combustion products during the growth process.The inner oxide layer below the original surface of tube was made of Fe–Cr spinel.The internal oxidation zone was believed to be the precursor stage of inner oxide layer.The formation of internal oxidation zone was due to O diffusing along grain boundaries to form oxide.There were Fe–Cr–Si oxides discontinuously distributed along grain boundaries in the internal oxidation zone of G102,while there were Fe–Cr oxides continuously distributed along grain boundaries in that of T91.展开更多
The ordered mesoporous aluminosilicate molecular sieve (MASMS-1) stable in the high-temperature steam has been successfully synthesized from the assembly of diluted ZSM-5-type precursor with mesoporous MCM-41. The m...The ordered mesoporous aluminosilicate molecular sieve (MASMS-1) stable in the high-temperature steam has been successfully synthesized from the assembly of diluted ZSM-5-type precursor with mesoporous MCM-41. The material was characterized by XRD, N2 adsorption-desorption, FE-SEM, TEM, FT-IR spectroscopy and 27A1 MAS NMR techniques. This mesoporous material shows high stability in the high-temperature steam [H2O (φ=20%) in N2 at 800 ℃ for 4 h], which might be ascribed to the synergistic effect of both thick walls containing zeolite-like five-membered ring subunits and highly condensed surface silanol groups.展开更多
This work proposes a novel tubular structure of high-temperature proton exchange membrane fuel cell(PEMFC)integrated with a built-in packed-bed methanol steam reformer to provide hydrogen for power output.A two-dimens...This work proposes a novel tubular structure of high-temperature proton exchange membrane fuel cell(PEMFC)integrated with a built-in packed-bed methanol steam reformer to provide hydrogen for power output.A two-dimensional axisymmetric non-isothermal model was developed in COMSOL Multiphysics 5.4 to simulate the performance of a tubular high temperature proton membrane fuel cell and a packed bed methanol reformer.The model considers the coupling multi-physical processes,including methanol reforming reaction,water gas shift reaction,methanol cracking reaction as well as the heat,mass and momentum transport processes.The sub-model of the tubular packed-bed methanol reformer is validated between 433 K and 493 K with the experimental data reported in the literature.The sub-model of the high temperature proton exchange fuel cell is validated between 393 K and 433 K with the published literature.Our results show that power output and temperature distribution of the integrated unit depend on methanol flow rates and working voltages.It was suggested that stable power generation performance of 0.14 W/cm_(2)and temperature drop in methanol steam reformer of≤10 K could be achieved by controlling the methanol space-time ratio of≥250 kg·s/mol with working voltage at 0.6 V,even in the absence of an external heat source.展开更多
文摘Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd juices were investigated. Results showed that the processing factors such as pressure, temperature, pH and processing time are important to the POD activity. POD in crude juices could be inactivated apparently above 50 MPa(pH 4.6, 35℃, 4 min), and activated at 20 MPa ( P < 0.01). Its remarkable inactivation could also be observed at 45 and 55℃ (20 MPa, pH 4.6, 4 min), and the evident activation appears at the material temperature 35℃ ( P < 0.01). The pH 3.0 could destroy POD almost completely (20 MPa, 35℃, 4 min), while pH 6.0 could not influence apparently the POD activity in crude juices( P > 0.05). In addition, the rules of POD activity along with the treatment time are variational under different processing pressures. The higher the treating pressure is, the shorter the processing time is needed to inactivate POD.
文摘The transformation of the energy supply needs further development of energy storage technologies in order to integrate the fluctuating renewable energy. The conversion of renewable wind power into green methane offers a technical approach with the necessary storage and transport capacities. Thus, the concept of Power-to-Gas which is illustrated here by the coupling of wind energy with a High Temperature Steam Electrolyser (HTSE) and a methanation unit enabling the production of green fuel like hydrogen and methane is presented is this paper. In fact, hydrogen can be used as energy carrier as well for the production of green fuels, like methane which is simpler to store and to transport and which can be thus used as storage medium for the stabilization of the electrical power supply as well as fuel for transport and heat sector. Its production using high temperature electrolysis is able to reduce the carbon dioxide emissions if performed with renewable resources. This is the case if the electricity needed for the HTSE comes from a wind turbine and the CO2 needed for the methanation step comes from biogas. For such a plant, the location and the boundary conditions have a great importance. Thus, this study considers the coupling of a HTSE with a wind turbine and a methanation reactor, and focuses about the site selection, depending of the geographical and economic considerations. The study is limited first to the European area. Schleswig-Holstein is found as a very good location for this plant. It is one of the regions with the largest wind reserves in Germany. This region has also available a lot of biogas and meets all the other necessary requirements.
文摘Based on the instantaneous high-pressure(IHP)produced by high-pressure single pole-cylinder pump, the effects of combining this pressure with medium temperature on the retention of total vitamin C(Vc)in wax gourd juices were investigated under 20 - 80 MPa, 35 - 58℃, pH 3. 0 - 6. 0 and processing time 0-8 min. Results showed that the loss of Vc increased with elevated processing temperatures(50 MPa, 4 min). When the temperature of raw juices was 35℃, the retention of total Vc was higher under 40 - 60 MPa than that under the pressure < 40 MPa or > 60 MPa, and it was up to 94%(4 min). The retention of total Vc decreases slowly within 6 min, but rapidly after 6 min. The pH can also influence the retention of total Vc, and this retention can come to a highest point at pH 6.0.
文摘The production of environment friendly green fuels is based on energy from renewable sources. Among the renewable sources, wind power is a very growing power technology. An example which has been discussed very widely is hydrogen which is an ideal fuel for a fuel cell. Hydrogen is the energy of the future. It will be used as energy carrier as well as reactant to produce green fuels, like methane which is easier to handle. Direct coupling of a High Temperature Steam Electrolyser (HTSE) with a wind turbine can be used to generate hydrogen. Indeed performing the electrolysis process at high temperatures offers the advantage of achieving higher efficiencies compared to the conventional water electrolysis. The hydrogen produced can be then reacted with the CO2 content of biogas to form methane as green fuel. Thus, the concept presented in this paper illustrates the potential of the HTSE technology coupled with a wind turbine, this system being combined with biogas in a methanation unit. Developing scenarios and flow sheets and using mass and energy balance, the technical performance of the concept is investigated. A plant capacity of 10 MWel is considered. An annual production of 1104 metric tons per year (Mt/a) hydrogen and thus of 5888 Mt/a methane is reached. The overall plant efficiency is calculated to be 38%. The combination of wind power and biogas offers thus many advantages which can facilitate the penetration of the wind resource and the progression to the hydrogen economy.
基金supported by the MEST/NRF (Nuclear R&D Program,2005-2004718 and 2009 0083392) of Korea
文摘Oxidation characteristics of Alloy 617 and Haynes 230 at 900 oC in simulated helium environment,hot steam environment containing H2 as well as in air and pure helium conditions were investigated.Compared to air condition,the oxidation rate of Alloy 617 was not significantly affected in helium and hot steam environments,while Haynes 230 showed lower oxidation rate in helium environment.On the other hand,the oxide morphology and structure of Alloy 617 were strongly affected by the environments,but those of Haynes 230 were less dependent on the environments.For Haynes 230,a Cr2O3 inner layer and a protective MnCr2O4 outer layer were formed in all environments,which contributed to the better oxidation resistance.As the mechanical properties,such as creep and tensile properties,were significantly affected by the oxidation behaviors,surface treatment methods to enhance oxidation resistance of these alloys should be developed.
基金Supported by the specialized research fund for the Doctoral Program of Higher Education (Grant No. 20070003033)
文摘High Temperature Steam Electrolysis (HTSE) through a solid oxide electrolytic cell (SOEC) has been receiving increasing research and development attention worldwide because of its high conversion efficiency (about 45%-59%) and its potential usage for large-scale production of hydrogen. The mechanism, composition, structure, and developing challenges of SOEC are summarized. Current situation, key materials, and core technologies of SOEC (solid oxide electrolytic cell) in HTSE are re- viewed, and the prospect of HTSE future application in advanced energy fields is proposed. In addition, the recent research achievements and study progress of HTSE in Tsinghua University are also intro- duced and presented.
基金V. ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No.21303037), China Postdoctoral Science Foundation (No.2013M53150), and tile Fundamental Research Funds for the Central Univcrsitics (No.2012HGZY0001).
文摘Redox-active Mn is introduced into the B site of redox-stable perovskite niobate-titanate to improve the electrocatalytic activity of composite cathode in an oxide-ion-conducting solid oxide electrolyzer. The XRD and XPS results reveal the successful partial replacement of Ti/Nb by Mn in the B site of niobate-titanate. The ionic conductivities of the Mndoped niobate-titanate are significantly improved by approximately 1 order of magnitude in reducing atmosphere and 0.5 order of magnitude in oxidizing atmosphere compared with bare niobate-titanate at 800 ℃. The current efficiency for Mn-doped niobate-titanate cathode is accordingly enhanced by ,-25% and 30% in contrast to the bare cathode with and without reducing gas flowing over the cathode under the applied voltage of 2.0 V at 800 ℃ in an oxide-ion-conducting solid oxide electrolyzer, respectively.
基金supported by the National Key R&D Program of China(Grant No. 2017YFB0305702)。
文摘Two kinds of silver based medium temperature brazing filler metals(45AgCuZnSn and 60AgCuSn) were selected to braze and seal brass flange pipe and copper pipe by high frequency heating brazing. In this paper, the quality of the braze was evaluated by immersion ultrasound, and the microstructure of the brazed joint was observed by SEM and EDS. The experimental results show that the high frequency heating brazing can quickly achieve the device sealing;through the ultrasonic flaw detection image calculation, the brazed bonding rate obtained by 60AgCuSn brazing is 87%, and by 45AgCuZnSn brazing is 71%;the cross-sectional area of the brazed joint obtained by two kinds of silver based medium temperature brazing filler metals is observed, the brazed joint obtained by 45AgCuZnSn brazing has defects visual, and a large amount of Zn element gathered in the defects, there is no obvious porosity in the brazed joint by 60AgCuSn brazing,and the bonding layer is dense and coherent. Through the contrast test, the choice of 60AgCuSn alloy brazing can meet the needs of high frequency brazing of brass flange pipe and copper pipe.
基金supported by the National Natural Science Foundation of China (Nos.51901113 and 51775300)the State Key Laboratory of Tribology in Tsinghua University, and the State Key Lab of Advanced Welding and Joining in Harbin Institute of Technology (No.AWJ-21M03)。
文摘For steam tubes used in thermal power plant,the inner and outer walls were operated in high-temperature steam and flue gas environments respectively.In this study,structure,microstructure and chemical composition of oxide films on inner and outer walls of exservice low Cr ferritic steel G102 tube and exservice high Cr ferritic steel T91 tube were analyzed.The oxide film was composed of outer oxide layer,inner oxide layer and internal oxidation zone.The outer oxide layer on the original surface of tube had a porous structure containing Fe oxides formed by diffusion and oxidation of Fe.More specially,the outer oxide layer formed in flue gas environment would mix with coal combustion products during the growth process.The inner oxide layer below the original surface of tube was made of Fe–Cr spinel.The internal oxidation zone was believed to be the precursor stage of inner oxide layer.The formation of internal oxidation zone was due to O diffusing along grain boundaries to form oxide.There were Fe–Cr–Si oxides discontinuously distributed along grain boundaries in the internal oxidation zone of G102,while there were Fe–Cr oxides continuously distributed along grain boundaries in that of T91.
基金Project supported by Key Program of National Natural Science Foundation of China (Nos. 20433030, 90610002), the National High-Tech Research and Development Program of China (No. 2006AA03Z328), and the Natural Science Foundation of Zhejiang Province (No. Z406142).
文摘The ordered mesoporous aluminosilicate molecular sieve (MASMS-1) stable in the high-temperature steam has been successfully synthesized from the assembly of diluted ZSM-5-type precursor with mesoporous MCM-41. The material was characterized by XRD, N2 adsorption-desorption, FE-SEM, TEM, FT-IR spectroscopy and 27A1 MAS NMR techniques. This mesoporous material shows high stability in the high-temperature steam [H2O (φ=20%) in N2 at 800 ℃ for 4 h], which might be ascribed to the synergistic effect of both thick walls containing zeolite-like five-membered ring subunits and highly condensed surface silanol groups.
文摘This work proposes a novel tubular structure of high-temperature proton exchange membrane fuel cell(PEMFC)integrated with a built-in packed-bed methanol steam reformer to provide hydrogen for power output.A two-dimensional axisymmetric non-isothermal model was developed in COMSOL Multiphysics 5.4 to simulate the performance of a tubular high temperature proton membrane fuel cell and a packed bed methanol reformer.The model considers the coupling multi-physical processes,including methanol reforming reaction,water gas shift reaction,methanol cracking reaction as well as the heat,mass and momentum transport processes.The sub-model of the tubular packed-bed methanol reformer is validated between 433 K and 493 K with the experimental data reported in the literature.The sub-model of the high temperature proton exchange fuel cell is validated between 393 K and 433 K with the published literature.Our results show that power output and temperature distribution of the integrated unit depend on methanol flow rates and working voltages.It was suggested that stable power generation performance of 0.14 W/cm_(2)and temperature drop in methanol steam reformer of≤10 K could be achieved by controlling the methanol space-time ratio of≥250 kg·s/mol with working voltage at 0.6 V,even in the absence of an external heat source.