The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work.The results showed that the RE-modifier can refine the crystalline ...The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work.The results showed that the RE-modifier can refine the crystalline grain of high-carbon medium-manganese steel.The shape and distribution of carbides are improved and the columnar grains and phosphide in grain boundary are eliminated.Consequently,the impact toughness of the steel is increased by more than one time,compared with no addition of RE-modifier.展开更多
The delayed fracture behavior of medium carbon high strength spring steel containing different amounts of boron (0. 000 5%, 0. 001 6 %) was studied using sustained load delayed fracture test. The results show that d...The delayed fracture behavior of medium carbon high strength spring steel containing different amounts of boron (0. 000 5%, 0. 001 6 %) was studied using sustained load delayed fracture test. The results show that delayed fracture resistance of boron containing steels is higher than that of conventional steel 60Si2MnA at the same strength level and it increases with the increase of boron eontent from 0. 000 5% to 0. 001 6%. The delayed fracture mode is mainly intergranular in the boron containing steels tempered at 350℃, which indicates that the addition of boron does not change the fracture character. However, the increase of boron content enlarges the size of the crack initia tion area. Further study of phase analysis indicates that most boron is in solid solution, and only a very small quantity of boron is in the M3 (C, B) phase.展开更多
This work investigated the evolution of multiphase microstructure and impact fracture behavior of medium carbon high silicon high strength steel subjected to the austempering treatment at 240,360,and400℃.The results ...This work investigated the evolution of multiphase microstructure and impact fracture behavior of medium carbon high silicon high strength steel subjected to the austempering treatment at 240,360,and400℃.The results show that martensite,bainite,and retained austenite(RA)are the main microstructural phases.The austempering treatments at 360 and 400℃ caused the formation of carbon-poor ferrite in the matrix,and the transformation of ultrafine bainite into coarse lath bainite and granular bainite,respectively.Thick filmy RA was distributed between bainite laths.The polygonal martensiteaustenite islands and blocky RA formed along the grain boundaries.The average carbon concentration in the matrix decreased with the temperature increase,while the impact toughness initially increased and then dropped with temperature.The quasi-cleavage brittle fracture dominated the impact fracture mechanism of the sample austempered at 240℃ by forming tearing surfaces and tearing steps.The microcracks disappeared in the RA on the prior austenite grain boundaries.On the other side,the fracture surface of the sample austempered at 360℃ exhibited ductile fracture with deep dimples and brittle fracture with cleavage river patterns.The polygonal martensite-austenite islands or blocky RA constrained the microcracks.After austempered at 400℃,the brittle fracture was dominant,showing river patterns,and the microcracks propagated through the granular bainite without any resistance.展开更多
The fracture splitting property of medium carbon steel 37MnSiS microalloyed with V up to 0. 45% was investigated by using simulated fracture splitting test,for the development of new crackable medium carbon steel to m...The fracture splitting property of medium carbon steel 37MnSiS microalloyed with V up to 0. 45% was investigated by using simulated fracture splitting test,for the development of new crackable medium carbon steel to manufacture high performance connecting rod. Conventional high carbon steel C70S6 was used for comparison. The results show that the volume fraction of both ferrite and V-rich M( C,N) particles increases,and the pearlite interlamellar spacing decreases with increasing V content,which in turn results in gradual increase of strength and decrease of ductility and impact energy. The fracture splitting property of the tested steel could be improved significantly due to the increase of V content mainly through the precipitation hardening mechanism of fine M( C,N) precipitates. The fraction of brittle cleavage fracture in the crack initiation area increases noticeably with increasing V content and full brittle cleavage fracture surface could be obtained when V content was increased to 0. 45%. It is concluded that medium carbon steel with V content higher than about 0. 28% possesses not only comparable or even higher mechanical properties with those of conventional steel C70S6,but also excellent fracture splitting property,and therefore,is more suitable to fabricate high performance fracture splitting connecting rod.展开更多
The cracking morphology of the hardfacing specimens taken from steel 5CrNiMo was observed. Meanwhile, the residual stress fields were measured and simulated. Based on experiment mentioned above, the improved structure...The cracking morphology of the hardfacing specimens taken from steel 5CrNiMo was observed. Meanwhile, the residual stress fields were measured and simulated. Based on experiment mentioned above, the improved structure and modified inclusion in hardfacing metal with rare earth (RE) oxide were analyzed. The results show that, the hardfacing crack is initiated from the coarse dendritic crystal grain boundary, inclusions and coarse austenite grain boundary in the HAZ and propagated by the residual stress existing in the center of the hardfacing metal and HAZ. The primary columnar grain structure can be refined by adding RE oxide in the coating of the electrode. The inclusion in the hardfacing metal can be modified as well. Meanwhile, if the martensite transformation temperature is decreased, the largest value of the residual tensile stress in the dangerous region can be reduced.展开更多
The flux cored wires with different rare earth oxide additions for hardfacing the workpieces of medium-high carbon steel were developed. The microstrucmre of the hardfacing layer was observed using the optical microsc...The flux cored wires with different rare earth oxide additions for hardfacing the workpieces of medium-high carbon steel were developed. The microstrucmre of the hardfacing layer was observed using the optical microscopy. The average dimension of primary austenite grains in hardfacing layer was measured by image analyzer. The primary austenite grain growth activation energy and index were calculated according to Sellars's mode and Beck formula, respectively. Moreover, the effect of rare earth oxide on the growth dynamics of primary aus- tenite grain was analyzed, and then discussed with the misfit theory. The experimental results showed that, by adding rare earth oxide, the av- erage dimension of primary austenite grains in hardfacing layer of medium-high carbon steel decreased, and it was the smallest when the ad- dition of rare earth oxide was 5.17 wt.%. Meanwhile, at this rare earth oxide addition, the primary austenite grain growth activating energy in hardfacing layer was the largest, while its index was the smallest. The calculated results indicated that the primary austenite grain could be refined because LaAlO3 as heterogeneous nuclei of γ-Fe was the most effective.展开更多
The temperature and residual stress fields of a medium-high carbon steel, welded by a cracking resistance electrode with rare earth (RE) oxide, were measured by thermo-vision analyzer and X-ray stress analyzer respect...The temperature and residual stress fields of a medium-high carbon steel, welded by a cracking resistance electrode with rare earth (RE) oxide, were measured by thermo-vision analyzer and X-ray stress analyzer respectively. Meanwhile, the martensitic transformation temperatures of matrix, hard-face welding (hardfacing) metal welded by conventional hardfacing electrode and that welded by cracking resistance electrode with RE oxide were determined. According to the experimental data and the thermo-physical, mechanical parameters of materials, finite element method (FEM) of temperature and stress fields was established. In this FEM, the effect of martensitic transformation on residual stress of hardfacing metal of medium-high carbon steel was taken into account. The results show that, by adding RE oxide in the coat of hardfacing electrode, the martensitic transformation temperature can be decreased, so that the residual tensile stress on the dangerous position can be decreased. Therefore, the cracking resistance of hardfacing metal can be improved.展开更多
Single compression tests were carried out with a Gleeble-3800 thermal simulator to investigate hot deform- ation behavior of two vanadium-microalloyed medium-carbon steels for fracture splitting connecting rod. The te...Single compression tests were carried out with a Gleeble-3800 thermal simulator to investigate hot deform- ation behavior of two vanadium-microalloyed medium-carbon steels for fracture splitting connecting rod. The tests were performed to a total true strain of 0.92 at true strain rates ranging from 10-2 to 10 s-1 and deformation temper- ature of 900--1 150 ℃, The results show that hot deformation behavior of the tested steels is similar to that of con- ventional medium-carbon microalloyed steels and dynamic recrystallization is easier to occur at higher deformation temperature and lower strain rate. The austenite deformation resistance and activation energy of deformation increase with increasing vanadium content from 0.15% to 0. 28% and thus the starting time of dynamic recrystallization was delayed. Finer recrystallized austenite grain could he obtained at higher strain rate, lower deformation temperature and higher vanadium content. TEM observation of the specimens quenched just before and after deformation reveals that vanadium is mainly in dissolved solute condition in austenite and thus affects the dynamic recrystallization behavior of the tested steels mainly through solute-drag effect.展开更多
文摘The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work.The results showed that the RE-modifier can refine the crystalline grain of high-carbon medium-manganese steel.The shape and distribution of carbides are improved and the columnar grains and phosphide in grain boundary are eliminated.Consequently,the impact toughness of the steel is increased by more than one time,compared with no addition of RE-modifier.
基金Item Sponsored by National Key Fundamental Research and Development Programme of China (2004CB619104)
文摘The delayed fracture behavior of medium carbon high strength spring steel containing different amounts of boron (0. 000 5%, 0. 001 6 %) was studied using sustained load delayed fracture test. The results show that delayed fracture resistance of boron containing steels is higher than that of conventional steel 60Si2MnA at the same strength level and it increases with the increase of boron eontent from 0. 000 5% to 0. 001 6%. The delayed fracture mode is mainly intergranular in the boron containing steels tempered at 350℃, which indicates that the addition of boron does not change the fracture character. However, the increase of boron content enlarges the size of the crack initia tion area. Further study of phase analysis indicates that most boron is in solid solution, and only a very small quantity of boron is in the M3 (C, B) phase.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0300105)the Fundamental Research Funds for the Central Universities(No.N180725021)the Fundamental Research Funds for the Central Universities(No.N2024005-4)。
文摘This work investigated the evolution of multiphase microstructure and impact fracture behavior of medium carbon high silicon high strength steel subjected to the austempering treatment at 240,360,and400℃.The results show that martensite,bainite,and retained austenite(RA)are the main microstructural phases.The austempering treatments at 360 and 400℃ caused the formation of carbon-poor ferrite in the matrix,and the transformation of ultrafine bainite into coarse lath bainite and granular bainite,respectively.Thick filmy RA was distributed between bainite laths.The polygonal martensiteaustenite islands and blocky RA formed along the grain boundaries.The average carbon concentration in the matrix decreased with the temperature increase,while the impact toughness initially increased and then dropped with temperature.The quasi-cleavage brittle fracture dominated the impact fracture mechanism of the sample austempered at 240℃ by forming tearing surfaces and tearing steps.The microcracks disappeared in the RA on the prior austenite grain boundaries.On the other side,the fracture surface of the sample austempered at 360℃ exhibited ductile fracture with deep dimples and brittle fracture with cleavage river patterns.The polygonal martensite-austenite islands or blocky RA constrained the microcracks.After austempered at 400℃,the brittle fracture was dominant,showing river patterns,and the microcracks propagated through the granular bainite without any resistance.
基金Item Sponsored by National High Technology Research and Development Program of China(2013AA031605)
文摘The fracture splitting property of medium carbon steel 37MnSiS microalloyed with V up to 0. 45% was investigated by using simulated fracture splitting test,for the development of new crackable medium carbon steel to manufacture high performance connecting rod. Conventional high carbon steel C70S6 was used for comparison. The results show that the volume fraction of both ferrite and V-rich M( C,N) particles increases,and the pearlite interlamellar spacing decreases with increasing V content,which in turn results in gradual increase of strength and decrease of ductility and impact energy. The fracture splitting property of the tested steel could be improved significantly due to the increase of V content mainly through the precipitation hardening mechanism of fine M( C,N) precipitates. The fraction of brittle cleavage fracture in the crack initiation area increases noticeably with increasing V content and full brittle cleavage fracture surface could be obtained when V content was increased to 0. 45%. It is concluded that medium carbon steel with V content higher than about 0. 28% possesses not only comparable or even higher mechanical properties with those of conventional steel C70S6,but also excellent fracture splitting property,and therefore,is more suitable to fabricate high performance fracture splitting connecting rod.
基金Project supported by Key Project of Science and Technology of Hebei Province (04212201D) and Research Foundationfor theReturned Overseas Chinese Scholars of State Education Ministry
文摘The cracking morphology of the hardfacing specimens taken from steel 5CrNiMo was observed. Meanwhile, the residual stress fields were measured and simulated. Based on experiment mentioned above, the improved structure and modified inclusion in hardfacing metal with rare earth (RE) oxide were analyzed. The results show that, the hardfacing crack is initiated from the coarse dendritic crystal grain boundary, inclusions and coarse austenite grain boundary in the HAZ and propagated by the residual stress existing in the center of the hardfacing metal and HAZ. The primary columnar grain structure can be refined by adding RE oxide in the coating of the electrode. The inclusion in the hardfacing metal can be modified as well. Meanwhile, if the martensite transformation temperature is decreased, the largest value of the residual tensile stress in the dangerous region can be reduced.
基金Program supported by National Nature Science Foundation of China(51271163)Key Project of Science and Technology of Hebei Province(09215106D)
文摘The flux cored wires with different rare earth oxide additions for hardfacing the workpieces of medium-high carbon steel were developed. The microstrucmre of the hardfacing layer was observed using the optical microscopy. The average dimension of primary austenite grains in hardfacing layer was measured by image analyzer. The primary austenite grain growth activation energy and index were calculated according to Sellars's mode and Beck formula, respectively. Moreover, the effect of rare earth oxide on the growth dynamics of primary aus- tenite grain was analyzed, and then discussed with the misfit theory. The experimental results showed that, by adding rare earth oxide, the av- erage dimension of primary austenite grains in hardfacing layer of medium-high carbon steel decreased, and it was the smallest when the ad- dition of rare earth oxide was 5.17 wt.%. Meanwhile, at this rare earth oxide addition, the primary austenite grain growth activating energy in hardfacing layer was the largest, while its index was the smallest. The calculated results indicated that the primary austenite grain could be refined because LaAlO3 as heterogeneous nuclei of γ-Fe was the most effective.
文摘The temperature and residual stress fields of a medium-high carbon steel, welded by a cracking resistance electrode with rare earth (RE) oxide, were measured by thermo-vision analyzer and X-ray stress analyzer respectively. Meanwhile, the martensitic transformation temperatures of matrix, hard-face welding (hardfacing) metal welded by conventional hardfacing electrode and that welded by cracking resistance electrode with RE oxide were determined. According to the experimental data and the thermo-physical, mechanical parameters of materials, finite element method (FEM) of temperature and stress fields was established. In this FEM, the effect of martensitic transformation on residual stress of hardfacing metal of medium-high carbon steel was taken into account. The results show that, by adding RE oxide in the coat of hardfacing electrode, the martensitic transformation temperature can be decreased, so that the residual tensile stress on the dangerous position can be decreased. Therefore, the cracking resistance of hardfacing metal can be improved.
基金Item Sponsored by National High Technology Research and Development Program of China(2013AA031605)
文摘Single compression tests were carried out with a Gleeble-3800 thermal simulator to investigate hot deform- ation behavior of two vanadium-microalloyed medium-carbon steels for fracture splitting connecting rod. The tests were performed to a total true strain of 0.92 at true strain rates ranging from 10-2 to 10 s-1 and deformation temper- ature of 900--1 150 ℃, The results show that hot deformation behavior of the tested steels is similar to that of con- ventional medium-carbon microalloyed steels and dynamic recrystallization is easier to occur at higher deformation temperature and lower strain rate. The austenite deformation resistance and activation energy of deformation increase with increasing vanadium content from 0.15% to 0. 28% and thus the starting time of dynamic recrystallization was delayed. Finer recrystallized austenite grain could he obtained at higher strain rate, lower deformation temperature and higher vanadium content. TEM observation of the specimens quenched just before and after deformation reveals that vanadium is mainly in dissolved solute condition in austenite and thus affects the dynamic recrystallization behavior of the tested steels mainly through solute-drag effect.