An accurate mapping and understanding of remaining oil distribution is very important for water control and stabilize oil production of mature oilfields in ultra-high water-cut stage.Currently,the Tuo-21 Fault Block o...An accurate mapping and understanding of remaining oil distribution is very important for water control and stabilize oil production of mature oilfields in ultra-high water-cut stage.Currently,the Tuo-21 Fault Block of the Shengtuo Oilfield has entered the stage of ultra-high water cut(97.2%).Poor adaptability of the well pattern,ineffective water injection cycle and low efficiency of engineering measures(such as workover,re-perforation and utilization of high-capacity pumps)are the significant problems in the ultra-high water-cut reservoir.In order to accurately describe the oil and water flow characteristics,relative permeability curves at high water injection multiple(injected pore volume)and a semiquantitative method is applied to perform fine reservoir simulation of the Sand group 3e7 in the Block.An accurate reservoir model is built and history matching is performed.The distribution characteristics of remaining oil in lateral and vertical directions are quantitatively simulated and analyzed.The results show that the numerical simulation considering relative permeability at high injection multiple can reflect truly the remaining oil distribution characteristics after water flooding in an ultrahigh water-cut stage.The distribution of remaining oil saturation can be mapped more accurately and quantitatively by using the‘four-points and five-types’classification method,providing a basis for potential tapping of various remaining oil types of oil reservoirs in late-stage of development with high water-cut.展开更多
Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the inje...Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the injection of CO_(2).This would prevent contact between the injected gas and the residual oil,restricting the development of the miscible zone.A micro-visual experiment of dead-end models,used to observe the effect of a film of water on the miscibility process,indicates that CO_(2)can penetrate the water film and come into contact with the residual oil,although the mixing is significantly delayed.However,the dissolution loss of CO_(2)at high water-cut conditions is not negligible.The oil-water partition coefficient,defined as the ratio of CO_(2)solubility in an oil-brine/two-phase system,keeps constant for specific reservoir conditions and changes little with an injection gas.The NMR device shows that when CO_(2)flooding follows water flooding,the residual oil decreasesdnot only in medium and large pores but also in small and micro pores.At levels of higher water saturation,CO_(2)displacement is characterized initially by a low oil production rate and high water-cut.After the CO_(2)breakthrough,the water-cut decreases sharply and the oil production rate increases gradually.The response time of CO_(2)flooding at high watercut reservoirs is typically delayed and prolonged.These results were confirmed in a pilot test for CO_(2)flooding at the P1-1 well group of the Pucheng Oilfield.Observations from this pilot study also suggest that a larger injection gas pore volume available for CO_(2)injection is required to offset the dissolution loss in high water saturation conditions.展开更多
The new forming process of AA6061 alloy tube, including solution treatment, granule medium internal high-pressure forming and aging treatment, was developed. The AA6061 alloy tube via heat treatment satisfied the form...The new forming process of AA6061 alloy tube, including solution treatment, granule medium internal high-pressure forming and aging treatment, was developed. The AA6061 alloy tube via heat treatment satisfied the forming requirement, and the granule medium internal high pressure forming method for AA6061 alloy tube was also realized by using convenient implementation with low requirement of equipment and flexible design of product. At a solution temperature of 560℃ and time of 120 min, the elongation of the AA6061 extruded tube increases by 300% and the strength and the hardness dramatically decrease too. Therefore, the AA6061 alloy tube meets the requirement of internal high-pressure forming because of the improvement of formability. The experiments shows that the strength and hardness of AA6061 alloy workpiece recover to that of the as-received alloy at an aging temperature of 180℃ and time of 360 min, and the strength of AA6061 alloy workpiece is equal to the base alloy. The typical parts of convex ring tube, stepped shaft tube and hexagonal tube were successfully produced in lab by using the present forming method. The forming tests show that the maximum expansion ratio(MER) of the AA6061 extruded tube increases by 25.5% and the material properties of formed AA6061 alloy tube reached the performance of as-received alloy.展开更多
An optimal medium (300 g·L^-1 initial glucose) comprising 6.3 mmol·L^-1 Mg2+, 5.0 mmol·L^-1 Ca2+, 15.0 g·L^-1 peptone and 21.5 g·L^-1 yeast extract was determined by uniform design to impr...An optimal medium (300 g·L^-1 initial glucose) comprising 6.3 mmol·L^-1 Mg2+, 5.0 mmol·L^-1 Ca2+, 15.0 g·L^-1 peptone and 21.5 g·L^-1 yeast extract was determined by uniform design to improve very high gravity (VHG) ethanol fermentation, showing over 30% increase in final ethanol (from 13.1% to 17.1%, by volume), 29% decrease in fermentation time (from 84 to 60 h), 80% increase in biomass formation and 26% increase in glucose utilization. Experiments also revealed physiological aspects linked to the fermentation enhancements. Compared to the control, trehalose in the cells grown in optimal fermentation medium increased 17.9-, 2.8-, 1.9-, 1.8- and 1.9-fold at the fermentation time of 12, 24, 36, 48 and 60 h, respectively. Its sharp rise at the early stage of fermentation when there was a considerable osmotic stress suggested that trehalose played an important role in promoting fermentation. Meanwhile, at the identical five fermentation time, the plasma membrane ATPase activity of the cells grown in optimal medium was 2.3, 1.8, 1.6, 1.5 and 1.3 times that of the control, respectively. Their disparities in enzymatic activity became wider when the glucose levels were dramatically changed for ethanol production, suggesting this enzyme also contributed to the fermentation improvements. Thus, medium optimization for VHG ethanol fermentation was found to trigger the increased yeast trehalose accumulation and plasma membrane ATPase activity.展开更多
This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance senso...This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance sensor(ATCS)and a cross-correlation flow meter(CFM)with a center body is proposed and experimentally evaluated.The ATCS is designed for water holdup measurement,whereas the CFM with a center body is proposed to obtain the mixture velocity.Then,a drift-flux model based on flow patterns is established to predict the individual-phase superficial velocity of oil-in-water flows.Results show that the ATCS possesses high resolution in water holdup measurement and that flow pattern information can be deduced from its signal through nonlinear time series analysis.The CFM can enhance the correlation of upstream and downstream signals and simplify the relationship between the cross-correlation velocity and mixture velocity.On the basis of the drift-flux model,individual-phase superficial velocities can be predicted with high accuracy for different flow patterns.展开更多
Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd ju...Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd juices were investigated. Results showed that the processing factors such as pressure, temperature, pH and processing time are important to the POD activity. POD in crude juices could be inactivated apparently above 50 MPa(pH 4.6, 35℃, 4 min), and activated at 20 MPa ( P < 0.01). Its remarkable inactivation could also be observed at 45 and 55℃ (20 MPa, pH 4.6, 4 min), and the evident activation appears at the material temperature 35℃ ( P < 0.01). The pH 3.0 could destroy POD almost completely (20 MPa, 35℃, 4 min), while pH 6.0 could not influence apparently the POD activity in crude juices( P > 0.05). In addition, the rules of POD activity along with the treatment time are variational under different processing pressures. The higher the treating pressure is, the shorter the processing time is needed to inactivate POD.展开更多
The visualization experiments were carried out to investigate the permeability of the high permeable medium (HPM) and the roles of the peel ply and the HPM in the mold filling.The influence of process parameters on m...The visualization experiments were carried out to investigate the permeability of the high permeable medium (HPM) and the roles of the peel ply and the HPM in the mold filling.The influence of process parameters on mold filling is discussed.Furthermore,the whole vacuum infusion molding process (VIMP) procedure is introduced in detail taking the manufacture of a model boat for example.展开更多
[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spat...[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects.展开更多
Based on the comparison of basic geological conditions and enrichment characteristics of shale oil plays, the heterogeneity of source and reservoir conditions and differential enrichment of medium-high maturity contin...Based on the comparison of basic geological conditions and enrichment characteristics of shale oil plays, the heterogeneity of source and reservoir conditions and differential enrichment of medium-high maturity continental shale oil plays in China have been confirmed.(1) Compared with the homogeneous geological settings and wide distribution of marine shale oil strata in North America, the continental medium and high maturity shale oil plays in China are significantly different in geological conditions generally;continental multi-cyclic tectonic evolution forms multiple types of lake basins in multi-stages, providing sites for large-scale development of continental shale oil, and giving rise to large scale high-quality source rocks, multiple types of reservoirs, and diverse source-reservoir combinations with significant heterogeneity.(2) The differences in sedimentary water environments lead to the heterogeneity in lithology, lithofacies, and organic material types of source rocks;the differences in material source supply and sedimentary facies belt result in reservoirs of different lithologies, including argillaceous and transition rocks, and tight siltstone, and complex source-reservoir combination types.(3) The heterogeneity of the source rock controls the differentiation of hydrocarbon generation and expulsion, the diverse reservoir types make reservoir performance different and the source-reservoir configurations complex, and these two factors ultimately make the shale oil enrichment patterns different. Among them, the hydrocarbon generation and expulsion capacity of high-quality source rocks affect the degree of shale oil enrichment. Freshwater hydrocarbon source rocks with TOC larger than 2.5% and saline hydrocarbon source rocks with TOC of 2% to 10% have a high content of retained hydrocarbons and are favorable.(4) High-abundance organic shale is the basis for the enrichment of shale oil inside the source. In addition to being retained in shale, liquid hydrocarbons migrate along laminae, diagenetic fractures, and thin sandy layers, and then accumulate in laminae of argillaceous siltstone, siltstone, and argillaceous dolomite, and dolomitic siltstone suites, etc. with low organic matter abundance in the shale strata, resulting in differences in enrichment pattern.展开更多
The power and voltage levels of renewable energy resources is growing with the evolution of the power electronics and switching module technologies.For that,the need for the development of a compact and highly efficie...The power and voltage levels of renewable energy resources is growing with the evolution of the power electronics and switching module technologies.For that,the need for the development of a compact and highly efficient solid-state transformer is becoming a critical task in-order to integrate the current AC grid with the new renewable energy systems.The objective of this paper is to present the design,implementation,and testing of a compact multi-port solid-state transformer for microgrid integration applications.The proposed system has a four-port transformer and four converters connected to the ports.The transformer has four windings integrated on a single common core.Thus,it can integrate different renewable energy resources and energy storage systems.Each port has a rated power of 25 kW,and the switching frequency is pushed to 50 k Hz.The ports are chosen to represent a realistic industrial microgrid model consisting of grid,energy storage system,photovoltaic system,and load.The grid port is designed to operate at 4.16 k VAC corresponding to 7.2 kV DC bus voltage,while the other three ports operate at 500 VDC.Moreover,the grid,energy storage and photovoltaic ports are active ports with dual active bridge topologies,while the load port is a passive port with full bridge rectifier one.The proposed design is first validated with simulation results,and then the proposed transformer is implemented and tested.Experimental results show that the designed system is suitable for 4.16 k VAC medium voltage grid integration.展开更多
Based on the instantaneous high-pressure(IHP)produced by high-pressure single pole-cylinder pump, the effects of combining this pressure with medium temperature on the retention of total vitamin C(Vc)in wax gourd juic...Based on the instantaneous high-pressure(IHP)produced by high-pressure single pole-cylinder pump, the effects of combining this pressure with medium temperature on the retention of total vitamin C(Vc)in wax gourd juices were investigated under 20 - 80 MPa, 35 - 58℃, pH 3. 0 - 6. 0 and processing time 0-8 min. Results showed that the loss of Vc increased with elevated processing temperatures(50 MPa, 4 min). When the temperature of raw juices was 35℃, the retention of total Vc was higher under 40 - 60 MPa than that under the pressure < 40 MPa or > 60 MPa, and it was up to 94%(4 min). The retention of total Vc decreases slowly within 6 min, but rapidly after 6 min. The pH can also influence the retention of total Vc, and this retention can come to a highest point at pH 6.0.展开更多
The delayed fracture behavior of medium carbon high strength spring steel containing different amounts of boron (0. 000 5%, 0. 001 6 %) was studied using sustained load delayed fracture test. The results show that d...The delayed fracture behavior of medium carbon high strength spring steel containing different amounts of boron (0. 000 5%, 0. 001 6 %) was studied using sustained load delayed fracture test. The results show that delayed fracture resistance of boron containing steels is higher than that of conventional steel 60Si2MnA at the same strength level and it increases with the increase of boron eontent from 0. 000 5% to 0. 001 6%. The delayed fracture mode is mainly intergranular in the boron containing steels tempered at 350℃, which indicates that the addition of boron does not change the fracture character. However, the increase of boron content enlarges the size of the crack initia tion area. Further study of phase analysis indicates that most boron is in solid solution, and only a very small quantity of boron is in the M3 (C, B) phase.展开更多
The objective of this paper is to understand the flow mechanism through visualization experiments and discuss theinfluence of process parameters on mold filling process. A 2D leakage flow model is developed to simulat...The objective of this paper is to understand the flow mechanism through visualization experiments and discuss theinfluence of process parameters on mold filling process. A 2D leakage flow model is developed to simulate the moldingprocess, and the simulation results show good agreement with experiments.展开更多
The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work.The results showed that the RE-modifier can refine the crystalline ...The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work.The results showed that the RE-modifier can refine the crystalline grain of high-carbon medium-manganese steel.The shape and distribution of carbides are improved and the columnar grains and phosphide in grain boundary are eliminated.Consequently,the impact toughness of the steel is increased by more than one time,compared with no addition of RE-modifier.展开更多
In medium voltage high power applications,multi-level current source converters(CSCs)are good candidate to increase system power region,reliability,and the quality of output waveforms.Compared with widely researched v...In medium voltage high power applications,multi-level current source converters(CSCs)are good candidate to increase system power region,reliability,and the quality of output waveforms.Compared with widely researched voltage source multi-level converters(MLCs),the current source MLCs have the advantages of inherent short-circuit protection,high power capability and high quality of output current waveforms.The main features of MLCs include reduced harmonics,lower switching frequency and reduced current stress on each device which is a particularly important for high power application with low voltage and high current requirements.This paper conducts a general review of the current research about MLCs in higher power medium voltage application.The different types of parallel structure based MLCs and the modulation methodologies will be introduced and compared.Specifically,the circuit analysis of the common-mode(CM)loop for parallel structures will be conducted,the common-mode voltage(CMV)and circulating current suppression methods developed on the base of multilevel modulations will be addressed.展开更多
The permeability of coal of middle to high ranks were tested using He,CH 4 and H 2O in single phase medium and using CH 4 and H 2O in double phase medium. The relation between adsorption and permeability of those medi...The permeability of coal of middle to high ranks were tested using He,CH 4 and H 2O in single phase medium and using CH 4 and H 2O in double phase medium. The relation between adsorption and permeability of those media was discussed, and the seepage flow characteristics of methane-water medium in coals were analyzed. The result shows that the coalbed methane resource of high-rank coal reservoirs in China is still recoverable.展开更多
It is known that both excitatory and inhibitory neuronal networks can achieve robust synchronization only under certain conditions, such as long synaptic delay or low level of heterogeneity. In this work, robust synch...It is known that both excitatory and inhibitory neuronal networks can achieve robust synchronization only under certain conditions, such as long synaptic delay or low level of heterogeneity. In this work, robust synchronization can be found in an excitatory/inhibitory (E/I) neuronal network with medium synaptie delay and high level of heterogeneity, which often occurs in real neuronal networks. Two effects of post-synaptic potentials (PSP) to network synchronization are presented, and the synaptic contribution of excitatory and inhibitory neurons to robust synchronization in this E/I network is investigated. It is found that both excitatory and inhibitory neurons may contribute to robust synchronization in E/I networks, especially the excitatory PSP has a more positive effect on synchronization in E/I networks than that in excitatory networks. This may explain the strong robustness of synchronization in Eli neuronal networks.展开更多
The Wugong Mts. region may have experienced three stages of metamorphism in Early Paleo-zoic, which may be closely related to the generations of regional deformation. The first stage ismedium-pressure metamorphism, th...The Wugong Mts. region may have experienced three stages of metamorphism in Early Paleo-zoic, which may be closely related to the generations of regional deformation. The first stage ismedium-pressure metamorphism, the second medium- and high-pressure one with stress on high-pressure metamorphism, and the third low-pressure and high-temperature metamorphism. Theregion, as a whole, is a Caledonian medium-high pressure metamorphic belt.展开更多
Establishment of a highly efficient regeneration system for the mature embryo of wheat will provide a convenient tool for wheat tissue culture and transformation, thereby facilitating the transformation of foreign gen...Establishment of a highly efficient regeneration system for the mature embryo of wheat will provide a convenient tool for wheat tissue culture and transformation, thereby facilitating the transformation of foreign genes into wheat. By using the mature embryos derived from 20 different wheat lines including Shi 4185, Yumai 66, Lunxuan 987, CB037, Yangmai 6, Xinchun 9, Bobwhite, Han 6172, Zheng 9023, Jimai 20, Ningchun 4, and Jing 411, the effects of some factors including inoculation methods, initiating culture media, organic additives, antioxidants, and auxins on the regeneration from the explants were evaluated. The results indicated that the scraping embryo culture was better than the whole embryo culture, the Aa medium was better than the SD2 medium and dicamba was better than 2,4-D in increasing the regeneration frequency. An Adi medium was established in this study by adding silver nitrate, cysteine, ascorbic acid, dicamba, glutamine into the Aa medium at the concentration of 4,40, 100, 2, and 5 mg L^-1, respectively. By using the Adi medium and the scraping technique, the regeneration frequencies of the mature embryos of CB037, Lunxuan 987, Hart 6172, Yangmai 6, Bobwhite, Zheng 9023, Shi 4 185, and Jimai 20 became 85.6, 60,1, 46.0, 42.1,42.0, 34.0, 33.0, and 32.0%, respectively, which were about 5-8 times higher than that obtained from the conventional culture mediums and techniques. This novel regeneration system could be helpful in wheat transformation.展开更多
基金funded by SINOPEC Science and Technology Project P18080by National Energy Administration Research and Development Center Project.
文摘An accurate mapping and understanding of remaining oil distribution is very important for water control and stabilize oil production of mature oilfields in ultra-high water-cut stage.Currently,the Tuo-21 Fault Block of the Shengtuo Oilfield has entered the stage of ultra-high water cut(97.2%).Poor adaptability of the well pattern,ineffective water injection cycle and low efficiency of engineering measures(such as workover,re-perforation and utilization of high-capacity pumps)are the significant problems in the ultra-high water-cut reservoir.In order to accurately describe the oil and water flow characteristics,relative permeability curves at high water injection multiple(injected pore volume)and a semiquantitative method is applied to perform fine reservoir simulation of the Sand group 3e7 in the Block.An accurate reservoir model is built and history matching is performed.The distribution characteristics of remaining oil in lateral and vertical directions are quantitatively simulated and analyzed.The results show that the numerical simulation considering relative permeability at high injection multiple can reflect truly the remaining oil distribution characteristics after water flooding in an ultrahigh water-cut stage.The distribution of remaining oil saturation can be mapped more accurately and quantitatively by using the‘four-points and five-types’classification method,providing a basis for potential tapping of various remaining oil types of oil reservoirs in late-stage of development with high water-cut.
文摘Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the injection of CO_(2).This would prevent contact between the injected gas and the residual oil,restricting the development of the miscible zone.A micro-visual experiment of dead-end models,used to observe the effect of a film of water on the miscibility process,indicates that CO_(2)can penetrate the water film and come into contact with the residual oil,although the mixing is significantly delayed.However,the dissolution loss of CO_(2)at high water-cut conditions is not negligible.The oil-water partition coefficient,defined as the ratio of CO_(2)solubility in an oil-brine/two-phase system,keeps constant for specific reservoir conditions and changes little with an injection gas.The NMR device shows that when CO_(2)flooding follows water flooding,the residual oil decreasesdnot only in medium and large pores but also in small and micro pores.At levels of higher water saturation,CO_(2)displacement is characterized initially by a low oil production rate and high water-cut.After the CO_(2)breakthrough,the water-cut decreases sharply and the oil production rate increases gradually.The response time of CO_(2)flooding at high watercut reservoirs is typically delayed and prolonged.These results were confirmed in a pilot test for CO_(2)flooding at the P1-1 well group of the Pucheng Oilfield.Observations from this pilot study also suggest that a larger injection gas pore volume available for CO_(2)injection is required to offset the dissolution loss in high water saturation conditions.
基金Project(51305386)supported by the National Natural Science Foundation of ChinaProject(E2013203093)supported by the Natural Science Foundation of Hebei Province,China
文摘The new forming process of AA6061 alloy tube, including solution treatment, granule medium internal high-pressure forming and aging treatment, was developed. The AA6061 alloy tube via heat treatment satisfied the forming requirement, and the granule medium internal high pressure forming method for AA6061 alloy tube was also realized by using convenient implementation with low requirement of equipment and flexible design of product. At a solution temperature of 560℃ and time of 120 min, the elongation of the AA6061 extruded tube increases by 300% and the strength and the hardness dramatically decrease too. Therefore, the AA6061 alloy tube meets the requirement of internal high-pressure forming because of the improvement of formability. The experiments shows that the strength and hardness of AA6061 alloy workpiece recover to that of the as-received alloy at an aging temperature of 180℃ and time of 360 min, and the strength of AA6061 alloy workpiece is equal to the base alloy. The typical parts of convex ring tube, stepped shaft tube and hexagonal tube were successfully produced in lab by using the present forming method. The forming tests show that the maximum expansion ratio(MER) of the AA6061 extruded tube increases by 25.5% and the material properties of formed AA6061 alloy tube reached the performance of as-received alloy.
基金Supported by the Natural Science Foundation of Fujian Province of China (E0810018)
文摘An optimal medium (300 g·L^-1 initial glucose) comprising 6.3 mmol·L^-1 Mg2+, 5.0 mmol·L^-1 Ca2+, 15.0 g·L^-1 peptone and 21.5 g·L^-1 yeast extract was determined by uniform design to improve very high gravity (VHG) ethanol fermentation, showing over 30% increase in final ethanol (from 13.1% to 17.1%, by volume), 29% decrease in fermentation time (from 84 to 60 h), 80% increase in biomass formation and 26% increase in glucose utilization. Experiments also revealed physiological aspects linked to the fermentation enhancements. Compared to the control, trehalose in the cells grown in optimal fermentation medium increased 17.9-, 2.8-, 1.9-, 1.8- and 1.9-fold at the fermentation time of 12, 24, 36, 48 and 60 h, respectively. Its sharp rise at the early stage of fermentation when there was a considerable osmotic stress suggested that trehalose played an important role in promoting fermentation. Meanwhile, at the identical five fermentation time, the plasma membrane ATPase activity of the cells grown in optimal medium was 2.3, 1.8, 1.6, 1.5 and 1.3 times that of the control, respectively. Their disparities in enzymatic activity became wider when the glucose levels were dramatically changed for ethanol production, suggesting this enzyme also contributed to the fermentation improvements. Thus, medium optimization for VHG ethanol fermentation was found to trigger the increased yeast trehalose accumulation and plasma membrane ATPase activity.
基金supported by the National Natural Science Foundation of China(Nos.51527805 and 11572220)
文摘This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance sensor(ATCS)and a cross-correlation flow meter(CFM)with a center body is proposed and experimentally evaluated.The ATCS is designed for water holdup measurement,whereas the CFM with a center body is proposed to obtain the mixture velocity.Then,a drift-flux model based on flow patterns is established to predict the individual-phase superficial velocity of oil-in-water flows.Results show that the ATCS possesses high resolution in water holdup measurement and that flow pattern information can be deduced from its signal through nonlinear time series analysis.The CFM can enhance the correlation of upstream and downstream signals and simplify the relationship between the cross-correlation velocity and mixture velocity.On the basis of the drift-flux model,individual-phase superficial velocities can be predicted with high accuracy for different flow patterns.
文摘Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd juices were investigated. Results showed that the processing factors such as pressure, temperature, pH and processing time are important to the POD activity. POD in crude juices could be inactivated apparently above 50 MPa(pH 4.6, 35℃, 4 min), and activated at 20 MPa ( P < 0.01). Its remarkable inactivation could also be observed at 45 and 55℃ (20 MPa, pH 4.6, 4 min), and the evident activation appears at the material temperature 35℃ ( P < 0.01). The pH 3.0 could destroy POD almost completely (20 MPa, 35℃, 4 min), while pH 6.0 could not influence apparently the POD activity in crude juices( P > 0.05). In addition, the rules of POD activity along with the treatment time are variational under different processing pressures. The higher the treating pressure is, the shorter the processing time is needed to inactivate POD.
文摘The visualization experiments were carried out to investigate the permeability of the high permeable medium (HPM) and the roles of the peel ply and the HPM in the mold filling.The influence of process parameters on mold filling is discussed.Furthermore,the whole vacuum infusion molding process (VIMP) procedure is introduced in detail taking the manufacture of a model boat for example.
基金Supported by the Key Science and Technology Projects of Guizhou Province,China[(2007)3017,(2008)3022]Major Special Project of Guizhou Province,China(2006-6006-2)
文摘[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects.
基金Supported by the National Natural Science Foundation of China (42072186)China National Oil and Gas Major Project (2016ZX05046-001)PetroChina Scientific Research and Technology Project (2021-DJ2203)。
文摘Based on the comparison of basic geological conditions and enrichment characteristics of shale oil plays, the heterogeneity of source and reservoir conditions and differential enrichment of medium-high maturity continental shale oil plays in China have been confirmed.(1) Compared with the homogeneous geological settings and wide distribution of marine shale oil strata in North America, the continental medium and high maturity shale oil plays in China are significantly different in geological conditions generally;continental multi-cyclic tectonic evolution forms multiple types of lake basins in multi-stages, providing sites for large-scale development of continental shale oil, and giving rise to large scale high-quality source rocks, multiple types of reservoirs, and diverse source-reservoir combinations with significant heterogeneity.(2) The differences in sedimentary water environments lead to the heterogeneity in lithology, lithofacies, and organic material types of source rocks;the differences in material source supply and sedimentary facies belt result in reservoirs of different lithologies, including argillaceous and transition rocks, and tight siltstone, and complex source-reservoir combination types.(3) The heterogeneity of the source rock controls the differentiation of hydrocarbon generation and expulsion, the diverse reservoir types make reservoir performance different and the source-reservoir configurations complex, and these two factors ultimately make the shale oil enrichment patterns different. Among them, the hydrocarbon generation and expulsion capacity of high-quality source rocks affect the degree of shale oil enrichment. Freshwater hydrocarbon source rocks with TOC larger than 2.5% and saline hydrocarbon source rocks with TOC of 2% to 10% have a high content of retained hydrocarbons and are favorable.(4) High-abundance organic shale is the basis for the enrichment of shale oil inside the source. In addition to being retained in shale, liquid hydrocarbons migrate along laminae, diagenetic fractures, and thin sandy layers, and then accumulate in laminae of argillaceous siltstone, siltstone, and argillaceous dolomite, and dolomitic siltstone suites, etc. with low organic matter abundance in the shale strata, resulting in differences in enrichment pattern.
基金supported by the National Science Foundation under Grant No.1650470,GRAPES I/UCRC program。
文摘The power and voltage levels of renewable energy resources is growing with the evolution of the power electronics and switching module technologies.For that,the need for the development of a compact and highly efficient solid-state transformer is becoming a critical task in-order to integrate the current AC grid with the new renewable energy systems.The objective of this paper is to present the design,implementation,and testing of a compact multi-port solid-state transformer for microgrid integration applications.The proposed system has a four-port transformer and four converters connected to the ports.The transformer has four windings integrated on a single common core.Thus,it can integrate different renewable energy resources and energy storage systems.Each port has a rated power of 25 kW,and the switching frequency is pushed to 50 k Hz.The ports are chosen to represent a realistic industrial microgrid model consisting of grid,energy storage system,photovoltaic system,and load.The grid port is designed to operate at 4.16 k VAC corresponding to 7.2 kV DC bus voltage,while the other three ports operate at 500 VDC.Moreover,the grid,energy storage and photovoltaic ports are active ports with dual active bridge topologies,while the load port is a passive port with full bridge rectifier one.The proposed design is first validated with simulation results,and then the proposed transformer is implemented and tested.Experimental results show that the designed system is suitable for 4.16 k VAC medium voltage grid integration.
文摘Based on the instantaneous high-pressure(IHP)produced by high-pressure single pole-cylinder pump, the effects of combining this pressure with medium temperature on the retention of total vitamin C(Vc)in wax gourd juices were investigated under 20 - 80 MPa, 35 - 58℃, pH 3. 0 - 6. 0 and processing time 0-8 min. Results showed that the loss of Vc increased with elevated processing temperatures(50 MPa, 4 min). When the temperature of raw juices was 35℃, the retention of total Vc was higher under 40 - 60 MPa than that under the pressure < 40 MPa or > 60 MPa, and it was up to 94%(4 min). The retention of total Vc decreases slowly within 6 min, but rapidly after 6 min. The pH can also influence the retention of total Vc, and this retention can come to a highest point at pH 6.0.
基金Item Sponsored by National Key Fundamental Research and Development Programme of China (2004CB619104)
文摘The delayed fracture behavior of medium carbon high strength spring steel containing different amounts of boron (0. 000 5%, 0. 001 6 %) was studied using sustained load delayed fracture test. The results show that delayed fracture resistance of boron containing steels is higher than that of conventional steel 60Si2MnA at the same strength level and it increases with the increase of boron eontent from 0. 000 5% to 0. 001 6%. The delayed fracture mode is mainly intergranular in the boron containing steels tempered at 350℃, which indicates that the addition of boron does not change the fracture character. However, the increase of boron content enlarges the size of the crack initia tion area. Further study of phase analysis indicates that most boron is in solid solution, and only a very small quantity of boron is in the M3 (C, B) phase.
文摘The objective of this paper is to understand the flow mechanism through visualization experiments and discuss theinfluence of process parameters on mold filling process. A 2D leakage flow model is developed to simulate the moldingprocess, and the simulation results show good agreement with experiments.
文摘The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work.The results showed that the RE-modifier can refine the crystalline grain of high-carbon medium-manganese steel.The shape and distribution of carbides are improved and the columnar grains and phosphide in grain boundary are eliminated.Consequently,the impact toughness of the steel is increased by more than one time,compared with no addition of RE-modifier.
文摘In medium voltage high power applications,multi-level current source converters(CSCs)are good candidate to increase system power region,reliability,and the quality of output waveforms.Compared with widely researched voltage source multi-level converters(MLCs),the current source MLCs have the advantages of inherent short-circuit protection,high power capability and high quality of output current waveforms.The main features of MLCs include reduced harmonics,lower switching frequency and reduced current stress on each device which is a particularly important for high power application with low voltage and high current requirements.This paper conducts a general review of the current research about MLCs in higher power medium voltage application.The different types of parallel structure based MLCs and the modulation methodologies will be introduced and compared.Specifically,the circuit analysis of the common-mode(CM)loop for parallel structures will be conducted,the common-mode voltage(CMV)and circulating current suppression methods developed on the base of multilevel modulations will be addressed.
基金National Natural Science Foundation of China(4 0 2 42 0 12 ,5 0 13 40 40 )
文摘The permeability of coal of middle to high ranks were tested using He,CH 4 and H 2O in single phase medium and using CH 4 and H 2O in double phase medium. The relation between adsorption and permeability of those media was discussed, and the seepage flow characteristics of methane-water medium in coals were analyzed. The result shows that the coalbed methane resource of high-rank coal reservoirs in China is still recoverable.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11102038,11472061,70971021,71371046and 61203325the Shanghai Natural Science Foundation under Grant No 13ZR1400200+1 种基金the Undergraduate Education Key Reform Project of Shanghai Universities under Grant No X12071306the Fundamental Research Funds for the Central Universities at Donghua University under Grant Nos 14D110402,2232013D3-39 and 14D110417
文摘It is known that both excitatory and inhibitory neuronal networks can achieve robust synchronization only under certain conditions, such as long synaptic delay or low level of heterogeneity. In this work, robust synchronization can be found in an excitatory/inhibitory (E/I) neuronal network with medium synaptie delay and high level of heterogeneity, which often occurs in real neuronal networks. Two effects of post-synaptic potentials (PSP) to network synchronization are presented, and the synaptic contribution of excitatory and inhibitory neurons to robust synchronization in this E/I network is investigated. It is found that both excitatory and inhibitory neurons may contribute to robust synchronization in E/I networks, especially the excitatory PSP has a more positive effect on synchronization in E/I networks than that in excitatory networks. This may explain the strong robustness of synchronization in Eli neuronal networks.
文摘The Wugong Mts. region may have experienced three stages of metamorphism in Early Paleo-zoic, which may be closely related to the generations of regional deformation. The first stage ismedium-pressure metamorphism, the second medium- and high-pressure one with stress on high-pressure metamorphism, and the third low-pressure and high-temperature metamorphism. Theregion, as a whole, is a Caledonian medium-high pressure metamorphic belt.
基金funded by the National Natural Science Foundation of China (30971776)the National Transgenic Organism Research Program of China(2008ZX08010-004)
文摘Establishment of a highly efficient regeneration system for the mature embryo of wheat will provide a convenient tool for wheat tissue culture and transformation, thereby facilitating the transformation of foreign genes into wheat. By using the mature embryos derived from 20 different wheat lines including Shi 4185, Yumai 66, Lunxuan 987, CB037, Yangmai 6, Xinchun 9, Bobwhite, Han 6172, Zheng 9023, Jimai 20, Ningchun 4, and Jing 411, the effects of some factors including inoculation methods, initiating culture media, organic additives, antioxidants, and auxins on the regeneration from the explants were evaluated. The results indicated that the scraping embryo culture was better than the whole embryo culture, the Aa medium was better than the SD2 medium and dicamba was better than 2,4-D in increasing the regeneration frequency. An Adi medium was established in this study by adding silver nitrate, cysteine, ascorbic acid, dicamba, glutamine into the Aa medium at the concentration of 4,40, 100, 2, and 5 mg L^-1, respectively. By using the Adi medium and the scraping technique, the regeneration frequencies of the mature embryos of CB037, Lunxuan 987, Hart 6172, Yangmai 6, Bobwhite, Zheng 9023, Shi 4 185, and Jimai 20 became 85.6, 60,1, 46.0, 42.1,42.0, 34.0, 33.0, and 32.0%, respectively, which were about 5-8 times higher than that obtained from the conventional culture mediums and techniques. This novel regeneration system could be helpful in wheat transformation.