The reaction course of urea synthesis from NH3 and CO2 was discussed on the basis of bimolecular reaction mode. It was considered probable that amino-formic acid is a vigorously corrosive intermediate product. An elec...The reaction course of urea synthesis from NH3 and CO2 was discussed on the basis of bimolecular reaction mode. It was considered probable that amino-formic acid is a vigorously corrosive intermediate product. An electrochemical corrosion mechanism of stainless steels and titanium in the urea medium was proposed.展开更多
The corrosion and tribocorrosion behaviors of AISI 304 austenitic stainless steel and Cr26Mo1 ultrapure high chromium ferrite stainless steel in 3.5 wt.%NaCl and 0.5 mol/L H2SO4 solutions were investigated.Microelectr...The corrosion and tribocorrosion behaviors of AISI 304 austenitic stainless steel and Cr26Mo1 ultrapure high chromium ferrite stainless steel in 3.5 wt.%NaCl and 0.5 mol/L H2SO4 solutions were investigated.Microelectrode electrochemical measurement technology was applied to identify electrochemistry behaviors during tribocorrosion tests in situ.The surface morphologies and compositions of the wear tracks were analyzed by scanning electron microscopy and Raman spectrum.The results showed that compositions of stainless steels,corrosive mediums and applied loads have great influence on tribocorrosion behaviors of stainless steels.Firstly,the corrosion resistance in static state of stainless steels primarily dominates its tribocorrosion behavior;meanwhile,better mechanical properties are in favor of tribocorrosion resistance.Secondly,the corrosion rate is promoted significantly in 3.5%NaCl solution by friction,while the tendency is inconspicuous in 0.5 mol/L H2SO4 solution.Last but not least,passive films on stainless steels can be wiped off by small friction force.With the increase in applied load,the effect of friction converts to forming friction oxide film from removing passivation film,so that a critical load exists below which the friction force can promote the corrosion process extremely.展开更多
Equiatomic CuZrAl and CuZrAlTi medium entropy alloys were designed and synthesized by mechanical alloying and spark plasma sintering technique.The alloying behavior,phase evolutions,microstructures and properties of s...Equiatomic CuZrAl and CuZrAlTi medium entropy alloys were designed and synthesized by mechanical alloying and spark plasma sintering technique.The alloying behavior,phase evolutions,microstructures and properties of samples were investigated by X-ray diffraction,differential scanning calorimetry,field emission scanning electron microscopy,microscopy/Vickers hardness testing and electrochemical polarization measurement.The results indicate that the final products of as-milled alloys consist of amorphous phases.Ti addition improves the glass forming ability of as-milled alloys.The as-sintered CuZrAl alloy contains face-centered cubic(fcc)solid solution,Al_(1.05)Cu_(0.95) Zr and AlZr_2 phases at different sintering temperatures.With Ti addition,the as-sintered sample is only composed of intermetallics at 690°C,while fcc1,fcc2 and CuTi3phases are formed at 1100°C.CuZrAlTi-1100°C alloy exhibits the highest hardness value of 1173HV0.2owing to the high sintering density,solid solution strengthening and homogeneous precipitation of nano-size crystalline phase.CuZrAlTi-690°C alloy presents a similar corrosion resistance with304 Lstainless steel in seawater solution and further possesses the lower corrosion rate.展开更多
文摘The reaction course of urea synthesis from NH3 and CO2 was discussed on the basis of bimolecular reaction mode. It was considered probable that amino-formic acid is a vigorously corrosive intermediate product. An electrochemical corrosion mechanism of stainless steels and titanium in the urea medium was proposed.
基金supported by PetroChina Key Core Technology Project(21ZG10)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDC04040400).
文摘The corrosion and tribocorrosion behaviors of AISI 304 austenitic stainless steel and Cr26Mo1 ultrapure high chromium ferrite stainless steel in 3.5 wt.%NaCl and 0.5 mol/L H2SO4 solutions were investigated.Microelectrode electrochemical measurement technology was applied to identify electrochemistry behaviors during tribocorrosion tests in situ.The surface morphologies and compositions of the wear tracks were analyzed by scanning electron microscopy and Raman spectrum.The results showed that compositions of stainless steels,corrosive mediums and applied loads have great influence on tribocorrosion behaviors of stainless steels.Firstly,the corrosion resistance in static state of stainless steels primarily dominates its tribocorrosion behavior;meanwhile,better mechanical properties are in favor of tribocorrosion resistance.Secondly,the corrosion rate is promoted significantly in 3.5%NaCl solution by friction,while the tendency is inconspicuous in 0.5 mol/L H2SO4 solution.Last but not least,passive films on stainless steels can be wiped off by small friction force.With the increase in applied load,the effect of friction converts to forming friction oxide film from removing passivation film,so that a critical load exists below which the friction force can promote the corrosion process extremely.
基金the financial support from the National Natural Science Foundation of China(No.51671095)Key Research Development Program of Shandong Province of China(No.2015GGx102016)
文摘Equiatomic CuZrAl and CuZrAlTi medium entropy alloys were designed and synthesized by mechanical alloying and spark plasma sintering technique.The alloying behavior,phase evolutions,microstructures and properties of samples were investigated by X-ray diffraction,differential scanning calorimetry,field emission scanning electron microscopy,microscopy/Vickers hardness testing and electrochemical polarization measurement.The results indicate that the final products of as-milled alloys consist of amorphous phases.Ti addition improves the glass forming ability of as-milled alloys.The as-sintered CuZrAl alloy contains face-centered cubic(fcc)solid solution,Al_(1.05)Cu_(0.95) Zr and AlZr_2 phases at different sintering temperatures.With Ti addition,the as-sintered sample is only composed of intermetallics at 690°C,while fcc1,fcc2 and CuTi3phases are formed at 1100°C.CuZrAlTi-1100°C alloy exhibits the highest hardness value of 1173HV0.2owing to the high sintering density,solid solution strengthening and homogeneous precipitation of nano-size crystalline phase.CuZrAlTi-690°C alloy presents a similar corrosion resistance with304 Lstainless steel in seawater solution and further possesses the lower corrosion rate.