Many studies revealed that the Earth medium's lateral heterogeneity can cause considerable effects on the co- and post-seismic deformation field. In this study, the threedimensional finite element numerical method ar...Many studies revealed that the Earth medium's lateral heterogeneity can cause considerable effects on the co- and post-seismic deformation field. In this study, the threedimensional finite element numerical method are adopted to quantify the effects of lateral heterogeneity caused by material parameters and fault dip angle on the co- and postseismic deformation in the near- and far-field. Our results show that: 1) the medium's lateral heterogeneity does affect the co-seismic deformation, with the effects increasing with the medium's lateral heterogeneity caused by material parameters; 2) the Lame parameters play a more dominant role than density in the effects caused by lateral heterogeneity; 3) when a fault's dip angle is smaller than 90, the effects of the medium's lateral heterogeneity on the hanging wall are greater than on the footwall; 4) the impact of lateral heterogeneity caused by the viscosity coefficient on the post-seismic deformation can affect a large area, including the near- and far-field.展开更多
Considering the influence of quadratic gradient term and medium deformation on the seepage equation, a well testing interpretation model for low permeability and deformation dual medium reservoirs was derived and esta...Considering the influence of quadratic gradient term and medium deformation on the seepage equation, a well testing interpretation model for low permeability and deformation dual medium reservoirs was derived and established. The difference method was used to solve the problem, and pressure and pressure derivative double logarithmic curves were drawn to analyze the seepage law. The research results indicate that the influence of starting pressure gradient and medium deformation on the pressure characteristic curve is mainly manifested in the middle and late stages. The larger the value, the more obvious the upward warping of the pressure and pressure derivative curve;the parameter characterizing the dual medium is the crossflow coefficient. The channeling coefficient determines the time and location of the appearance of the “concave”. The smaller the value, the later the appearance of the “concave”, and the more to the right of the “concave”.展开更多
It is very important to design the optimum starting time of water injection for the development of low permeability reservoirs. In this type of reservoir the starting time of water injection will be affected by a rese...It is very important to design the optimum starting time of water injection for the development of low permeability reservoirs. In this type of reservoir the starting time of water injection will be affected by a reservoir pressure-sensitive effect. In order to optimize the starting time of water injection in low permeability reservoirs, this effect of pressure change on rock permeability of low permeability reservoirs was, at first, studied by physical simulation. It was shown that the rock permeability decreases exponentially with an increase in formation pressure. Secondly, we conducted a reservoir engineering study, from which we obtained analytic relationships between formation pressure, oil production rate, water production rate and water injection rate. After our physical, theoretical and economical analyses, we proposed an approach which takes the pressure-sensitive effect into consideration and designed the optimum starting time of water injection, based on the principle of material balance. Finally, the corresponding software was developed and applied to one block of the Jiangsu Oilfield. It is shown that water injection, in advance of production, can decrease the adverse impact of the pressure-sensitive effect on low permeability reservoir development. A water-flooding project should be preferably initiated in advance of production for no more than one year and the optimum ratio of formation pressure to initial formation pressure should be maintained at a level between 1.05 and 1.2.展开更多
It is reported that there exist deformable media which display quantum effects just as quantum entities do. As such, each quantum entity usually treated as a point particle may be represented by a deformable medium, t...It is reported that there exist deformable media which display quantum effects just as quantum entities do. As such, each quantum entity usually treated as a point particle may be represented by a deformable medium, the dynamic behavior of which is prescribed by four dynamic state variables, including mass density, velocity, internal pressure, and intrinsic angular momentum. In conjunction with the finding of the characteristic equation characterizing the physical nature of such media, it is found that a complex field quantity may be introduced to uncover a perhaps unexpected correlation, i.e., the governing dynamic equations for such media may be exactly reduced to the SchrSdinger equation, from which the closed-form solutions for all the four dynamic state variables can be obtained. It turns out that this complex field quantity is just the wavefunction in the SchrSdinger equation. Moreover, the dynamic effects peculiar to spin are derivable as direct consequences. It appears that these results provide a missing link in quantum theory, in the sense of disclosing the physical origin and nature of both the wavefunction and the wave equation. Now, the inherent indeterminacy in quantum theory may be rendered irrelevant. The consequences are explained for certain long-standing fundamental issues.展开更多
基金co-supported by the National Natural Science Foundation of China (41431069)the State Key Development Program for Basic Research of China (2013CB733304, 2013CB733303)+1 种基金the Doctoral Fund of Ministry of Education of China (20110141130010)China Postdoctoral Science Foundation funded project (2013M542062)
文摘Many studies revealed that the Earth medium's lateral heterogeneity can cause considerable effects on the co- and post-seismic deformation field. In this study, the threedimensional finite element numerical method are adopted to quantify the effects of lateral heterogeneity caused by material parameters and fault dip angle on the co- and postseismic deformation in the near- and far-field. Our results show that: 1) the medium's lateral heterogeneity does affect the co-seismic deformation, with the effects increasing with the medium's lateral heterogeneity caused by material parameters; 2) the Lame parameters play a more dominant role than density in the effects caused by lateral heterogeneity; 3) when a fault's dip angle is smaller than 90, the effects of the medium's lateral heterogeneity on the hanging wall are greater than on the footwall; 4) the impact of lateral heterogeneity caused by the viscosity coefficient on the post-seismic deformation can affect a large area, including the near- and far-field.
文摘Considering the influence of quadratic gradient term and medium deformation on the seepage equation, a well testing interpretation model for low permeability and deformation dual medium reservoirs was derived and established. The difference method was used to solve the problem, and pressure and pressure derivative double logarithmic curves were drawn to analyze the seepage law. The research results indicate that the influence of starting pressure gradient and medium deformation on the pressure characteristic curve is mainly manifested in the middle and late stages. The larger the value, the more obvious the upward warping of the pressure and pressure derivative curve;the parameter characterizing the dual medium is the crossflow coefficient. The channeling coefficient determines the time and location of the appearance of the “concave”. The smaller the value, the later the appearance of the “concave”, and the more to the right of the “concave”.
基金Projects 2003BA613-07-05 supported by the Program of National "Fifteen" Science and Technology 04E7029 by the CNPC Innovation Foundation
文摘It is very important to design the optimum starting time of water injection for the development of low permeability reservoirs. In this type of reservoir the starting time of water injection will be affected by a reservoir pressure-sensitive effect. In order to optimize the starting time of water injection in low permeability reservoirs, this effect of pressure change on rock permeability of low permeability reservoirs was, at first, studied by physical simulation. It was shown that the rock permeability decreases exponentially with an increase in formation pressure. Secondly, we conducted a reservoir engineering study, from which we obtained analytic relationships between formation pressure, oil production rate, water production rate and water injection rate. After our physical, theoretical and economical analyses, we proposed an approach which takes the pressure-sensitive effect into consideration and designed the optimum starting time of water injection, based on the principle of material balance. Finally, the corresponding software was developed and applied to one block of the Jiangsu Oilfield. It is shown that water injection, in advance of production, can decrease the adverse impact of the pressure-sensitive effect on low permeability reservoir development. A water-flooding project should be preferably initiated in advance of production for no more than one year and the optimum ratio of formation pressure to initial formation pressure should be maintained at a level between 1.05 and 1.2.
基金Project supported by the National Natural Science Foundation of China(No.11372172)the 211-Project launched by the Education Committee of China through Shanghai University(No.S.15-0303-15-208)
文摘It is reported that there exist deformable media which display quantum effects just as quantum entities do. As such, each quantum entity usually treated as a point particle may be represented by a deformable medium, the dynamic behavior of which is prescribed by four dynamic state variables, including mass density, velocity, internal pressure, and intrinsic angular momentum. In conjunction with the finding of the characteristic equation characterizing the physical nature of such media, it is found that a complex field quantity may be introduced to uncover a perhaps unexpected correlation, i.e., the governing dynamic equations for such media may be exactly reduced to the SchrSdinger equation, from which the closed-form solutions for all the four dynamic state variables can be obtained. It turns out that this complex field quantity is just the wavefunction in the SchrSdinger equation. Moreover, the dynamic effects peculiar to spin are derivable as direct consequences. It appears that these results provide a missing link in quantum theory, in the sense of disclosing the physical origin and nature of both the wavefunction and the wave equation. Now, the inherent indeterminacy in quantum theory may be rendered irrelevant. The consequences are explained for certain long-standing fundamental issues.