The standard Gibbs energies of transfer (Δ tr G 0) for potassium tetraphenylborate (KBPh 4) have been studied in the systems of water and water +1 propanol (PrOH) as well as water and water + t butyl alcohol (TBA) at...The standard Gibbs energies of transfer (Δ tr G 0) for potassium tetraphenylborate (KBPh 4) have been studied in the systems of water and water +1 propanol (PrOH) as well as water and water + t butyl alcohol (TBA) at 298.15?K. The results show that -Δ tr G 0 exhibits a complicated changing pattern with the mole fraction of TBA( x (TBA)) or PrOH ( x (PrOH)), and Δ tr G 0 has the a maximum value at x (TBA) = 0.2 or x (PrOH)=0.2. Especially, -Δ tr G 0 of KBPh 4 changes unusually with increasing x (TBA) when x (TBA) < 0.05. The reasons for these changes were analyzed and discussed.展开更多
A hybrid star with a pure quark core,a hadron crust and a mixed phase between the two is considered.The relativistic mean field model for hadron matter and the effective mass bag model for quark matter are used to con...A hybrid star with a pure quark core,a hadron crust and a mixed phase between the two is considered.The relativistic mean field model for hadron matter and the effective mass bag model for quark matter are used to construct the equation of state for hybrid stars.The influences of medium effects that are parameterized by the strong coupling constant have been discussed on the configuration of rotating stars.The strong coupling constant is a prominent factor that influences the properties of rotating hybrid stars.展开更多
We study ΛK~+ pair production in the interaction of protons of 2.83 GeV kinetic energy with C, Cu,Ag, and Au target nuclei in the framework of the nuclear spectral function approach for incoherent primary proton–nu...We study ΛK~+ pair production in the interaction of protons of 2.83 GeV kinetic energy with C, Cu,Ag, and Au target nuclei in the framework of the nuclear spectral function approach for incoherent primary proton–nucleon and secondary pion–nucleon production processes, and processes associated with the creation of intermediate Σ~0K~+ pairs. The approach accounts for the initial proton and final Λ hyperon absorption, final K~+ meson distortion in nuclei, target nucleon binding, and Fermi motion, as well as nuclear mean-field potential effects on these processes.We calculate the Λ momentum dependence of the absolute ΛK~+ yield from the target nuclei considered, in the kinematical conditions of the ANKE experiment, performed at COSY, within the different scenarios for the Λ-nucleus effective scalar potential. We show that the above observable is appreciably sensitive to this potential in the low-momentum region. Therefore, direct comparison of the results of our calculations with the data from the ANKE-at-COSY experiment can help to determine the above potential at finite momenta. We also demonstrate that the two-step pion–nucleon production channels dominate in the low-momentum ΛK~+ production in the chosen kinematics and, therefore, they have to be taken into account in the analysis of these data.展开更多
This paper deals with the magnetohydrodynamic (MHD) flow of an Oldroyd 8-constant fluid in a porous medium when no-slip condition is no longer valid. Modified Darcy's law is used in the flow modelling. The non-line...This paper deals with the magnetohydrodynamic (MHD) flow of an Oldroyd 8-constant fluid in a porous medium when no-slip condition is no longer valid. Modified Darcy's law is used in the flow modelling. The non-linear differential equation with non-linear boundary conditions is solved numerically using finite difference scheme in combination with an iterative technique. Numerical results are obtained for the Couette, Poiseuille and generalized Couette flows. The effects of slip parameters on the velocity profile are discussed.展开更多
Combined bodies of rock-like material and rock are widely encountered in geotechnical engineering,such as tunnels and mines.The existing theoretical models describing the stress-strain relationship of a combined body ...Combined bodies of rock-like material and rock are widely encountered in geotechnical engineering,such as tunnels and mines.The existing theoretical models describing the stress-strain relationship of a combined body lack a binary feature.Based on effective medium theory,this paper presents the governing equation of the“elastic modulus”for combined and single bodies under triaxial compressive tests.A binary effective medium model is then established.Based on the compressive experiment of concretegranite combined bodies,the feasibility of determining the stress threshold based on crack axial strain is discussed,and the model is verified.The model is further extended to coal-rock combined bodies of more diverse types,and the variation laws of the compressive mechanical parameters are then discussed.The results show that the fitting accuracy of the model with the experimental curves of the concretegranite combined bodies and various types of coal-rock combined bodies are over 95%.The crack axial strain method can replace the crack volumetric strain method,which clarifies the physical meanings of the model parameters.The variation laws of matrix parameters and crack parameters are discussed in depth and are expected to be more widely used in geotechnical engineering.展开更多
The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of soli...The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of solid matrix of porous medium including glass balls and aluminum foam are considered. The governing partial differential equations are simplified by dimensionless variables and similarity transformations, and are solved numerically by using a shooting method with the fourth-fifth-order Runge-Kutta integration technique. It is indicated that the increase of the porosity leads to the enhancement of heat transfer in the surface of the Marangoni boundary layer flow.展开更多
During the Indian National Gas Hydrate Program(NGHP)Expedition 02,Logging-while-drilling(LWD)logs were acquired at three sites(NGHP-02-11,NGHP-02-12,and NGHP-02-13)across the Mahanadi Basin in area A.We applied rock p...During the Indian National Gas Hydrate Program(NGHP)Expedition 02,Logging-while-drilling(LWD)logs were acquired at three sites(NGHP-02-11,NGHP-02-12,and NGHP-02-13)across the Mahanadi Basin in area A.We applied rock physics theory to available sonic velocity logs to know the distribution of gas hydrate at site NGHP-02-11 and NGHP-02-13.Rock physics modeling using sonic velocity at well location shows that gas hydrate is distributed mainly within the depth intervals of 150-265 m and 100 -215 mbsf at site NGHP-02-11 and NGHP-02-13,respectively,with an average saturation of about 4%of the pore space and the maximum concentration of about 40%of the pore space at 250 m depth at site NGHP-02-11,and at site NGHP-02-13 an average saturation of about 2%of the pore space and the maximum concentration of about 20%of the pore space at 246 m depth,as gas hydrate is distributed mainly within 100-246 mbsf at this site.Saturation of gas hydrate estimated from the electrical resistivity method using density derived porosity and electrical resistivity logs from Archie's empirical formula shows high saturation compared to that from the sonic log.However,estimates of hydrate saturation based on sonic P-wave velocity may differ significantly from that based on resistivity,because gas and hydrate have higher resistivity than conductive pore fluid and sonic P-wave velocity shows strong effect on gas hydrate as a small amount of gas reduces the velocity significantly while increasing velocity due to the presence of hydrate.At site NGHP-02-11,gas hydrate saturation is in the range of 15%e30%,in two zones between 150-180 and 245-265 mbsf.Site NGHP-02-012 shows a gas hydrate saturation of 20%e30%in the zone between 100 and 207 mbsf.Site NGHP-02-13 shows a gas hydrate saturation up to 30%in the zone between 215 and 246 mbsf.Combined observations from rock physics modeling and Archie’s approximation show the gas hydrate concentrations are relatively low(<4%of the pore space)at the sites of the Mahanadi Basin in the turbidite channel system.展开更多
A calculation model based on effective medium theory has been developed for predicting elastic properties of dry carbonates with complex pore structures by integrating the Kuster-Toksǒz model with a differential meth...A calculation model based on effective medium theory has been developed for predicting elastic properties of dry carbonates with complex pore structures by integrating the Kuster-Toksǒz model with a differential method.All types of pores are simultaneously introduced to the composite during the differential iteration process according to the ratio of their volume fractions.Based on this model,the effects of pore structures on predicted pore-pressure in carbonates were analyzed.Calculation results indicate that cracks with low pore aspect ratios lead to pore-pressure overestimation which results in lost circulation and reservoir damage.However,moldic pores and vugs with high pore aspect ratios lead to pore-pressure underestimation which results in well kick and even blowout.The pore-pressure deviation due to cracks and moldic pores increases with an increase in porosity.For carbonates with complex pore structures,adopting conventional pore-pressure prediction methods and casing program designs will expose the well drilling engineering to high uncertainties.Velocity prediction models considering the influence of pore structure need to be built to improve the reliability and accuracy of pore-pressure prediction in carbonates.展开更多
A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antiref...A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antireflection coating. The polarization performance of PBS is discussed by rigorous couple-wave analysis (RCWA) method at a wavelength of 1550 nm. The result shows that sub-wavelength metal rectangular grating is characterized by a high reflectivity, like metal films for TE polarization, and high transmissivity, like dielectric films for TM polarization. The optimal design accords well with the results simulated by RCWA method.展开更多
An air dense medium fluidized bed separator(ADMFBS) is used for dry beneficiation of coal using ultrafine magnetite particles as a pseudo-fluid medium. In this process, the coal particle gains additional weight due to...An air dense medium fluidized bed separator(ADMFBS) is used for dry beneficiation of coal using ultrafine magnetite particles as a pseudo-fluid medium. In this process, the coal particle gains additional weight due to coating on its surface and deposition at dead zone area by fine magnetite particles.Hence, the effective density of coal particle increases and the position of coal particle changes accordingly. In this work, an attempt was made to predict the position of coal particle in non-bubbling condition dense medium fluidized bed system. Coal particles of different shape such as cubical, rectangular prism,spherical and triangular prism with different projected area and density were used. The results show that the position of coal particle in air dense medium fluidized bed follows descending order with respect to the increase of density, projected area of coal particle and different shapes(i.e., triangular prism, cubical,rectangular prism and spherical). Empirical mathematical correlations were developed to predict the position of coal particle.展开更多
We build the perturbation expansion method for nonlinear composite media and extend the EMA for nonlinear effective conductivity. Using the solutions of boundary-value problems of a cylindrical in- clusion, we derive ...We build the perturbation expansion method for nonlinear composite media and extend the EMA for nonlinear effective conductivity. Using the solutions of boundary-value problems of a cylindrical in- clusion, we derive formulae for nonlinear effective conductivity.展开更多
Although seemingly disparate,high-energy nuclear physics(HENP)and machine learning(ML)have begun to merge in the last few years,yielding interesting results.It is worthy to raise the profile of utilizing this novel mi...Although seemingly disparate,high-energy nuclear physics(HENP)and machine learning(ML)have begun to merge in the last few years,yielding interesting results.It is worthy to raise the profile of utilizing this novel mindset from ML in HENP,to help interested readers see the breadth of activities around this intersection.The aim of this mini-review is to inform the community of the current status and present an overview of the application of ML to HENP.From different aspects and using examples,we examine how scientific questions involving HENP can be answered using ML.展开更多
In this study, we illustrate the effective medium theories in the designs of three-dimensional composite metama- terials of both negative permittivity and negative permeability. The proposed metamaterial consists of r...In this study, we illustrate the effective medium theories in the designs of three-dimensional composite metama- terials of both negative permittivity and negative permeability. The proposed metamaterial consists of random coated spheres with sizes smaller compared to the wavelength embedded in a dielectric host. Simple design rules and formulas following the effective medium models are numerically and analytically presented. We demonstrate that the revised Maxwell-Garnett effective medium theory enables us to design three-dimensional composite metamaterials through the assembly of coated spheres which are random and much smaller than the wavelength of the light. The proposed ap- proach allows for the precise control of the permittivity and the permeability and guides a facile, flexible, and versatile way for the fabrication of composite metamaterials.展开更多
We investigate a hybrid optomechanical system consisting of two coupled cavities, one of them is composed of two-end fixed mirrors (called the traditional cavity), and the other has a one-end oscillating mirror (na...We investigate a hybrid optomechanical system consisting of two coupled cavities, one of them is composed of two-end fixed mirrors (called the traditional cavity), and the other has a one-end oscillating mirror (named as the optomechanical cavity). A Kerr medium is inside the traditional cavity to enhance the nonlinearity due to the fact that it can cause observing of bistable behavior in intracavity intensity for the optomechanical cavity. The Hamiltonian of the system is written in a rotating frame and its dynamics is described by quantum Langevin equations of motion. Our proposed system exhibits unconventional plots for the mean photon number of the optomechanical cavity which are not observed in previous works. The present results show a deep effect of the Kerr medium on optical bistability of intracavity intensity for the optomechanical cavity. Also, coupling strength of the cavities can effectively change the stability of the system.展开更多
The effect of TPA, a potent tumor promoter, on SSV-NIH3T3 cells in serum-free medium was investigated. TPA stimulated DNA synthesis of SSV-NIH3T3 cells on the third day of culture in SFM. In SDS-PAGF of medium conditi...The effect of TPA, a potent tumor promoter, on SSV-NIH3T3 cells in serum-free medium was investigated. TPA stimulated DNA synthesis of SSV-NIH3T3 cells on the third day of culture in SFM. In SDS-PAGF of medium conditioned by TPA-treated SSV-NIH3T3 cells (in SFM+TPA), the amounts of four proteins of 31.0 Kd, 28.5 Kd, 25.5 Kd and 13.5 Kd strikingly increased over that of non-TPA-treated counterpart (in SFM). The PDGF-like activity was also detected in CM of SFM+TPA. When insulin and EGF were drown off the SFM+TPA (SFM-Ins-EGF+TPA), TPA lost its ability to stimulate DNA synthesis of SSV-NIH3T3 cells on the third day and SDS-PAGE of the conditioned medium showed that the amounts of the four proteins noted above grately reduced. However, cells in SFM-Ins-EGF+TPA were in almost the same growth condition as cells in complete SFM+TPA on the third day of culture. Results were discussed in the paper.展开更多
Considering a new type of environment influences, we use a two-energy-level quantum system to investigate neutrino oscillations in medium. Besides the matter effects derived by Wolfenstein, there may exist extra term...Considering a new type of environment influences, we use a two-energy-level quantum system to investigate neutrino oscillations in medium. Besides the matter effects derived by Wolfenstein, there may exist extra terms due to a unitary evolution of the system between pure and mixed states, so the evolution equation is modified obviously. We show that the extra terms may play some role and induce observable effects in solar neutrino problem, especially, in the long baseline neutrino oscillation experiments which are under serious consideration recently, if the parameters fall into a suitable region.展开更多
Based on the effective medium approximation theory of composites, the whitecap-covered sea surface is treated as a medium layer of dense seawater droplets and air. Two electromagnetic scattering models of randomly rou...Based on the effective medium approximation theory of composites, the whitecap-covered sea surface is treated as a medium layer of dense seawater droplets and air. Two electromagnetic scattering models of randomly rough surface are applied to the investigation of microwave backscattering of breaking waves driven by strong wind. The shapes of seawater droplets are considered by calculating the effective dielectric constant of the whitecap layer. The responses of seawater droplets shapes, such as sphere and ellipsoid, to the backscattering coefficient are discussed. Numerical results of the models are in good agreement with the experimental measurements of horizontally and vertically polarized backscattering at microwave frequency 13.9GHz and different incidence angles.展开更多
The thermal conductivity of diamond hybrid SiC/Cu,diamond/Cu and SiC/Cu composite were calculated by using the extended differential effective medium (DEM) theoretical model in this paper.The effects of the particle v...The thermal conductivity of diamond hybrid SiC/Cu,diamond/Cu and SiC/Cu composite were calculated by using the extended differential effective medium (DEM) theoretical model in this paper.The effects of the particle volume fraction,the particle size and the volume ratio of the diamond particles to the total particles on the thermal conductivity of the composite were studied.The DEM theoretical calculation results show that,for the diamond hybrid SiC/Cu composite,when the particle volume fraction is above 46% and the volume ratio of the diamond particles to the SiC particles is above 13:12,the thermal conductivity of the composite can reach 500 W·m-1·K-1.The thermal conduc-tivity of the composite has little change when the particle size is above 200μm.The experimental results show that Ti can improve the wettability of the SiC and Cu.The thermal conductivity of the diamond hybrid SiCTi/Cu is almost two times better than that of the diamond hybrid SiC/Cu.It is feasible to predict the thermal conductivity of the composite by DEM theoretical model.展开更多
Gradient index layers and rugate structures were fabricated on a Leybold Syrus pro deposition system by plasma-assisted coevaporation of the low index material silica and the high index material niobium pentoxide.To o...Gradient index layers and rugate structures were fabricated on a Leybold Syrus pro deposition system by plasma-assisted coevaporation of the low index material silica and the high index material niobium pentoxide.To obtain information about the compositional profiles of the produced layers,cross sectional transmission electron microscopy was used in assistance to deposition rate data recorded by two independent crystal monitors during the film preparation.The depth dependent concentration profiles were transformed to refractive index gradients by means of effective medium approximation.Based on the refractive index gradients the corresponding samples`transmission and reflection spectra could be calculated by utilizing matrix formalism.The relevance of the established refractive index profiles could be verified by comparison of the calculated spectra with the measured ones.展开更多
Using the concept of optical transformation, we report on an amplifying device, which can make an arbitrary object enlarged. Its potential application to small object identification and detection is foreseeable. The c...Using the concept of optical transformation, we report on an amplifying device, which can make an arbitrary object enlarged. Its potential application to small object identification and detection is foreseeable. The cylindrical anisotropic amplifying shell could be mimicked by radially symmetrical "sectors" alternating in composition between two profiles of isotropic dielectrics; the permittivity and permeability in each "sector" can be properly determined by the effective medium theory. Both the magnetic and nonmagnetic amplifying devices are validated by full-wave finite element simulations. Good amplifying performance is observed.展开更多
文摘The standard Gibbs energies of transfer (Δ tr G 0) for potassium tetraphenylborate (KBPh 4) have been studied in the systems of water and water +1 propanol (PrOH) as well as water and water + t butyl alcohol (TBA) at 298.15?K. The results show that -Δ tr G 0 exhibits a complicated changing pattern with the mole fraction of TBA( x (TBA)) or PrOH ( x (PrOH)), and Δ tr G 0 has the a maximum value at x (TBA) = 0.2 or x (PrOH)=0.2. Especially, -Δ tr G 0 of KBPh 4 changes unusually with increasing x (TBA) when x (TBA) < 0.05. The reasons for these changes were analyzed and discussed.
基金Supported by National Natural Science foundation of China (10747126)National Basic Research Program of China (973 Program 2009CB824800)
文摘A hybrid star with a pure quark core,a hadron crust and a mixed phase between the two is considered.The relativistic mean field model for hadron matter and the effective mass bag model for quark matter are used to construct the equation of state for hybrid stars.The influences of medium effects that are parameterized by the strong coupling constant have been discussed on the configuration of rotating stars.The strong coupling constant is a prominent factor that influences the properties of rotating hybrid stars.
基金Supported by the Ministry of Education and Science of the Russian Federation
文摘We study ΛK~+ pair production in the interaction of protons of 2.83 GeV kinetic energy with C, Cu,Ag, and Au target nuclei in the framework of the nuclear spectral function approach for incoherent primary proton–nucleon and secondary pion–nucleon production processes, and processes associated with the creation of intermediate Σ~0K~+ pairs. The approach accounts for the initial proton and final Λ hyperon absorption, final K~+ meson distortion in nuclei, target nucleon binding, and Fermi motion, as well as nuclear mean-field potential effects on these processes.We calculate the Λ momentum dependence of the absolute ΛK~+ yield from the target nuclei considered, in the kinematical conditions of the ANKE experiment, performed at COSY, within the different scenarios for the Λ-nucleus effective scalar potential. We show that the above observable is appreciably sensitive to this potential in the low-momentum region. Therefore, direct comparison of the results of our calculations with the data from the ANKE-at-COSY experiment can help to determine the above potential at finite momenta. We also demonstrate that the two-step pion–nucleon production channels dominate in the low-momentum ΛK~+ production in the chosen kinematics and, therefore, they have to be taken into account in the analysis of these data.
文摘This paper deals with the magnetohydrodynamic (MHD) flow of an Oldroyd 8-constant fluid in a porous medium when no-slip condition is no longer valid. Modified Darcy's law is used in the flow modelling. The non-linear differential equation with non-linear boundary conditions is solved numerically using finite difference scheme in combination with an iterative technique. Numerical results are obtained for the Couette, Poiseuille and generalized Couette flows. The effects of slip parameters on the velocity profile are discussed.
基金the Major Program of National Natural Science Foundation of China(No.41941019)Shaanxi Province Innovative Talent Promotion Plan-Science and Technology Innovation Team(No.2021TD-55)Central University Natural Science Innovation Team(No.300102262402)。
文摘Combined bodies of rock-like material and rock are widely encountered in geotechnical engineering,such as tunnels and mines.The existing theoretical models describing the stress-strain relationship of a combined body lack a binary feature.Based on effective medium theory,this paper presents the governing equation of the“elastic modulus”for combined and single bodies under triaxial compressive tests.A binary effective medium model is then established.Based on the compressive experiment of concretegranite combined bodies,the feasibility of determining the stress threshold based on crack axial strain is discussed,and the model is verified.The model is further extended to coal-rock combined bodies of more diverse types,and the variation laws of the compressive mechanical parameters are then discussed.The results show that the fitting accuracy of the model with the experimental curves of the concretegranite combined bodies and various types of coal-rock combined bodies are over 95%.The crack axial strain method can replace the crack volumetric strain method,which clarifies the physical meanings of the model parameters.The variation laws of matrix parameters and crack parameters are discussed in depth and are expected to be more widely used in geotechnical engineering.
基金Supported by the National Natural Science Foundation of China under Grant No 51305080
文摘The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of solid matrix of porous medium including glass balls and aluminum foam are considered. The governing partial differential equations are simplified by dimensionless variables and similarity transformations, and are solved numerically by using a shooting method with the fourth-fifth-order Runge-Kutta integration technique. It is indicated that the increase of the porosity leads to the enhancement of heat transfer in the surface of the Marangoni boundary layer flow.
文摘During the Indian National Gas Hydrate Program(NGHP)Expedition 02,Logging-while-drilling(LWD)logs were acquired at three sites(NGHP-02-11,NGHP-02-12,and NGHP-02-13)across the Mahanadi Basin in area A.We applied rock physics theory to available sonic velocity logs to know the distribution of gas hydrate at site NGHP-02-11 and NGHP-02-13.Rock physics modeling using sonic velocity at well location shows that gas hydrate is distributed mainly within the depth intervals of 150-265 m and 100 -215 mbsf at site NGHP-02-11 and NGHP-02-13,respectively,with an average saturation of about 4%of the pore space and the maximum concentration of about 40%of the pore space at 250 m depth at site NGHP-02-11,and at site NGHP-02-13 an average saturation of about 2%of the pore space and the maximum concentration of about 20%of the pore space at 246 m depth,as gas hydrate is distributed mainly within 100-246 mbsf at this site.Saturation of gas hydrate estimated from the electrical resistivity method using density derived porosity and electrical resistivity logs from Archie's empirical formula shows high saturation compared to that from the sonic log.However,estimates of hydrate saturation based on sonic P-wave velocity may differ significantly from that based on resistivity,because gas and hydrate have higher resistivity than conductive pore fluid and sonic P-wave velocity shows strong effect on gas hydrate as a small amount of gas reduces the velocity significantly while increasing velocity due to the presence of hydrate.At site NGHP-02-11,gas hydrate saturation is in the range of 15%e30%,in two zones between 150-180 and 245-265 mbsf.Site NGHP-02-012 shows a gas hydrate saturation of 20%e30%in the zone between 100 and 207 mbsf.Site NGHP-02-13 shows a gas hydrate saturation up to 30%in the zone between 215 and 246 mbsf.Combined observations from rock physics modeling and Archie’s approximation show the gas hydrate concentrations are relatively low(<4%of the pore space)at the sites of the Mahanadi Basin in the turbidite channel system.
基金the financial support from the National Natural Science Foundation of China (No. 51274230)the Natural Science Foundation of Shandong Province (No. ZR2012EEL01)the Fundamental Research Funds for the Central Universities (No. 14CX02040A and No. 14CX06023A)
文摘A calculation model based on effective medium theory has been developed for predicting elastic properties of dry carbonates with complex pore structures by integrating the Kuster-Toksǒz model with a differential method.All types of pores are simultaneously introduced to the composite during the differential iteration process according to the ratio of their volume fractions.Based on this model,the effects of pore structures on predicted pore-pressure in carbonates were analyzed.Calculation results indicate that cracks with low pore aspect ratios lead to pore-pressure overestimation which results in lost circulation and reservoir damage.However,moldic pores and vugs with high pore aspect ratios lead to pore-pressure underestimation which results in well kick and even blowout.The pore-pressure deviation due to cracks and moldic pores increases with an increase in porosity.For carbonates with complex pore structures,adopting conventional pore-pressure prediction methods and casing program designs will expose the well drilling engineering to high uncertainties.Velocity prediction models considering the influence of pore structure need to be built to improve the reliability and accuracy of pore-pressure prediction in carbonates.
基金Project supported by Science Foundation of the Chongqing Committee of Education,China (Grant No KJ071205)
文摘A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antireflection coating. The polarization performance of PBS is discussed by rigorous couple-wave analysis (RCWA) method at a wavelength of 1550 nm. The result shows that sub-wavelength metal rectangular grating is characterized by a high reflectivity, like metal films for TE polarization, and high transmissivity, like dielectric films for TM polarization. The optimal design accords well with the results simulated by RCWA method.
文摘An air dense medium fluidized bed separator(ADMFBS) is used for dry beneficiation of coal using ultrafine magnetite particles as a pseudo-fluid medium. In this process, the coal particle gains additional weight due to coating on its surface and deposition at dead zone area by fine magnetite particles.Hence, the effective density of coal particle increases and the position of coal particle changes accordingly. In this work, an attempt was made to predict the position of coal particle in non-bubbling condition dense medium fluidized bed system. Coal particles of different shape such as cubical, rectangular prism,spherical and triangular prism with different projected area and density were used. The results show that the position of coal particle in air dense medium fluidized bed follows descending order with respect to the increase of density, projected area of coal particle and different shapes(i.e., triangular prism, cubical,rectangular prism and spherical). Empirical mathematical correlations were developed to predict the position of coal particle.
文摘We build the perturbation expansion method for nonlinear composite media and extend the EMA for nonlinear effective conductivity. Using the solutions of boundary-value problems of a cylindrical in- clusion, we derive formulae for nonlinear effective conductivity.
基金supported in part by the National Natural Science Foundation of China under contract Nos.11890714,12147101(Ma),12075098(Pang),12247107,12075007(Song)the Germany BMBF under the ErUM-Data project(Zhou)the Guangdong Major Project of Basic and Applied Basic Research No.2020B0301030008(Ma).
文摘Although seemingly disparate,high-energy nuclear physics(HENP)and machine learning(ML)have begun to merge in the last few years,yielding interesting results.It is worthy to raise the profile of utilizing this novel mindset from ML in HENP,to help interested readers see the breadth of activities around this intersection.The aim of this mini-review is to inform the community of the current status and present an overview of the application of ML to HENP.From different aspects and using examples,we examine how scientific questions involving HENP can be answered using ML.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61107053,61138001,and 61007034)the Tianjin Natural Science Foundation,China (Grant No. 11JCYBJC25900)
文摘In this study, we illustrate the effective medium theories in the designs of three-dimensional composite metama- terials of both negative permittivity and negative permeability. The proposed metamaterial consists of random coated spheres with sizes smaller compared to the wavelength embedded in a dielectric host. Simple design rules and formulas following the effective medium models are numerically and analytically presented. We demonstrate that the revised Maxwell-Garnett effective medium theory enables us to design three-dimensional composite metamaterials through the assembly of coated spheres which are random and much smaller than the wavelength of the light. The proposed ap- proach allows for the precise control of the permittivity and the permeability and guides a facile, flexible, and versatile way for the fabrication of composite metamaterials.
文摘We investigate a hybrid optomechanical system consisting of two coupled cavities, one of them is composed of two-end fixed mirrors (called the traditional cavity), and the other has a one-end oscillating mirror (named as the optomechanical cavity). A Kerr medium is inside the traditional cavity to enhance the nonlinearity due to the fact that it can cause observing of bistable behavior in intracavity intensity for the optomechanical cavity. The Hamiltonian of the system is written in a rotating frame and its dynamics is described by quantum Langevin equations of motion. Our proposed system exhibits unconventional plots for the mean photon number of the optomechanical cavity which are not observed in previous works. The present results show a deep effect of the Kerr medium on optical bistability of intracavity intensity for the optomechanical cavity. Also, coupling strength of the cavities can effectively change the stability of the system.
文摘The effect of TPA, a potent tumor promoter, on SSV-NIH3T3 cells in serum-free medium was investigated. TPA stimulated DNA synthesis of SSV-NIH3T3 cells on the third day of culture in SFM. In SDS-PAGF of medium conditioned by TPA-treated SSV-NIH3T3 cells (in SFM+TPA), the amounts of four proteins of 31.0 Kd, 28.5 Kd, 25.5 Kd and 13.5 Kd strikingly increased over that of non-TPA-treated counterpart (in SFM). The PDGF-like activity was also detected in CM of SFM+TPA. When insulin and EGF were drown off the SFM+TPA (SFM-Ins-EGF+TPA), TPA lost its ability to stimulate DNA synthesis of SSV-NIH3T3 cells on the third day and SDS-PAGE of the conditioned medium showed that the amounts of the four proteins noted above grately reduced. However, cells in SFM-Ins-EGF+TPA were in almost the same growth condition as cells in complete SFM+TPA on the third day of culture. Results were discussed in the paper.
文摘Considering a new type of environment influences, we use a two-energy-level quantum system to investigate neutrino oscillations in medium. Besides the matter effects derived by Wolfenstein, there may exist extra terms due to a unitary evolution of the system between pure and mixed states, so the evolution equation is modified obviously. We show that the extra terms may play some role and induce observable effects in solar neutrino problem, especially, in the long baseline neutrino oscillation experiments which are under serious consideration recently, if the parameters fall into a suitable region.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 40476062 and 10374026).
文摘Based on the effective medium approximation theory of composites, the whitecap-covered sea surface is treated as a medium layer of dense seawater droplets and air. Two electromagnetic scattering models of randomly rough surface are applied to the investigation of microwave backscattering of breaking waves driven by strong wind. The shapes of seawater droplets are considered by calculating the effective dielectric constant of the whitecap layer. The responses of seawater droplets shapes, such as sphere and ellipsoid, to the backscattering coefficient are discussed. Numerical results of the models are in good agreement with the experimental measurements of horizontally and vertically polarized backscattering at microwave frequency 13.9GHz and different incidence angles.
基金financially supported by High-Technology Research and Development Program of China (No.2008AA03Z505)
文摘The thermal conductivity of diamond hybrid SiC/Cu,diamond/Cu and SiC/Cu composite were calculated by using the extended differential effective medium (DEM) theoretical model in this paper.The effects of the particle volume fraction,the particle size and the volume ratio of the diamond particles to the total particles on the thermal conductivity of the composite were studied.The DEM theoretical calculation results show that,for the diamond hybrid SiC/Cu composite,when the particle volume fraction is above 46% and the volume ratio of the diamond particles to the SiC particles is above 13:12,the thermal conductivity of the composite can reach 500 W·m-1·K-1.The thermal conduc-tivity of the composite has little change when the particle size is above 200μm.The experimental results show that Ti can improve the wettability of the SiC and Cu.The thermal conductivity of the diamond hybrid SiCTi/Cu is almost two times better than that of the diamond hybrid SiC/Cu.It is feasible to predict the thermal conductivity of the composite by DEM theoretical model.
文摘Gradient index layers and rugate structures were fabricated on a Leybold Syrus pro deposition system by plasma-assisted coevaporation of the low index material silica and the high index material niobium pentoxide.To obtain information about the compositional profiles of the produced layers,cross sectional transmission electron microscopy was used in assistance to deposition rate data recorded by two independent crystal monitors during the film preparation.The depth dependent concentration profiles were transformed to refractive index gradients by means of effective medium approximation.Based on the refractive index gradients the corresponding samples`transmission and reflection spectra could be calculated by utilizing matrix formalism.The relevance of the established refractive index profiles could be verified by comparison of the calculated spectra with the measured ones.
基金Project supported by the Open Research Program in State Key Laboratory of Millimeter Waves,China (Grant No.K200802)the National Natural Science Foundation of China (Grant No.61302048)the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions,China
文摘Using the concept of optical transformation, we report on an amplifying device, which can make an arbitrary object enlarged. Its potential application to small object identification and detection is foreseeable. The cylindrical anisotropic amplifying shell could be mimicked by radially symmetrical "sectors" alternating in composition between two profiles of isotropic dielectrics; the permittivity and permeability in each "sector" can be properly determined by the effective medium theory. Both the magnetic and nonmagnetic amplifying devices are validated by full-wave finite element simulations. Good amplifying performance is observed.