In this study, the biocompatible protective coating was formed using plasma electrolytic oxidation(PEO) on bioresorbable Mg-0.8Ca alloy. The composition of the formed coating was studied using XRD, SEM-EDX analysis, a...In this study, the biocompatible protective coating was formed using plasma electrolytic oxidation(PEO) on bioresorbable Mg-0.8Ca alloy. The composition of the formed coating was studied using XRD, SEM-EDX analysis, and micro-Raman spectroscopy. The uniform distribution of hydroxyapatite over the thickness of protective PEO-layer was established. Using traditional(EIS, PDP, OCP) and local scanning electrochemical methods(SVET, SIET with H^(+)-selective microelectrode), the level of protective properties of PEO-layer in a biological environment(mammalian cell culture medium, MEM) was determined. It was established that modification of Mg-0.8Ca alloy surface by PEO contributes to a significant increase in the corrosion resistance of the surface layer, making it possible to control the process of material‘s biodegradation. The maximum local electrochemical activity was recorded after 72 h of testing, while for the uncoated sample,intense corrosion degradation was recorded in the first 12 min of exposure to the cell culture medium. Formation of the PEO-coating results in a twofold decrease in the corrosion current density(2.8·10^(-6)A cm^(-2)) and an increase in the impedance modulus measured at a low frequency(1.7·10^(4)Ω cm^(2)) in comparison with the uncoated material(9.5·10^(-6)A cm^(-2);8.1·10^(3)Ω cm^(2)). The mechanism of material bioresorption was established and a model for biodegradation process of Mg-0.8Ca alloy with hydroxyapatite-containing PEO-coating in MEM was proposed. Analysis of these results and comparing with others obtained by various scientific groups indicate the prospects for application of biocompatible PEO-coating on Mg-Ca alloy in implant surgery.展开更多
The electrochemical behaviour of biodegradable magnesium alloy Mg-0.8Ca was evaluated in a mammalian cell culture medium(MEM)and Na Cl solutions(0.9 wt.%, 0.3 wt.%) using traditional(EIS, PDP, OCP) and local scanning ...The electrochemical behaviour of biodegradable magnesium alloy Mg-0.8Ca was evaluated in a mammalian cell culture medium(MEM)and Na Cl solutions(0.9 wt.%, 0.3 wt.%) using traditional(EIS, PDP, OCP) and local scanning electrochemical(SVET, SIET with p H-selective microelectrode) methods at the micro-and meso-level. Corrosion rates of samples in two different media were determined using weight loss tests. The influence of testing media components, alloy composition and microstructure on the material’s degradation process was determined.The SVET/SIET test parameters were optimized for in vitro investigation of the bioresorbable material surface. The mechanism of the alloy’s bioresorption was suggested. The effect of microsized phases on the corrosion behaviour of the alloy was proved using complementary in situ monitoring and SKPFM measurements. The rapid degradation rate of the alloy is related to the presence of local microgalvanic cells formed by cathodic α-magnesium matrix and anodic Mg_(2)Ca phase. The highest corrosion activity was revealed in the first 12 min of sample exposure to MEM, followed by stabilization of corrosion process due to the material’s passivation. Using SEM-EDX analysis, micro-Raman spectroscopy and XPS analysis the composition of the corrosion products was determined. Degradation in MEM proceeds with a formation of magnesium-and-carbonate substituted hydroxyapatite-containing film on the sample’s surface. The low possibility of application of Mg-0.8Ca alloy without coating protection in implant surgery was highlighted.展开更多
基金Local electrochemical tests,biocompatible coating formation and modeling the mechanism of the material degradation were supported by the Grant of Russian Science Foundation,Russia (project no.21-73-10148,https://rscf.ru/en/project/ 21-73-10148/)The study of material‘s structure,composition,and kinetics of the corrosion processes using traditional electrochemical methods was supported by the Grant of Russian Science Foundation,Russia (project no.20-13-00130,https://rscf.ru/en/project/20-13-00130/)XRD data were acquired under the government assignments from the Ministry of Science and Higher Education of the Russian Federation,Russia (project no.FWFN(0205)-2022-0003)。
文摘In this study, the biocompatible protective coating was formed using plasma electrolytic oxidation(PEO) on bioresorbable Mg-0.8Ca alloy. The composition of the formed coating was studied using XRD, SEM-EDX analysis, and micro-Raman spectroscopy. The uniform distribution of hydroxyapatite over the thickness of protective PEO-layer was established. Using traditional(EIS, PDP, OCP) and local scanning electrochemical methods(SVET, SIET with H^(+)-selective microelectrode), the level of protective properties of PEO-layer in a biological environment(mammalian cell culture medium, MEM) was determined. It was established that modification of Mg-0.8Ca alloy surface by PEO contributes to a significant increase in the corrosion resistance of the surface layer, making it possible to control the process of material‘s biodegradation. The maximum local electrochemical activity was recorded after 72 h of testing, while for the uncoated sample,intense corrosion degradation was recorded in the first 12 min of exposure to the cell culture medium. Formation of the PEO-coating results in a twofold decrease in the corrosion current density(2.8·10^(-6)A cm^(-2)) and an increase in the impedance modulus measured at a low frequency(1.7·10^(4)Ω cm^(2)) in comparison with the uncoated material(9.5·10^(-6)A cm^(-2);8.1·10^(3)Ω cm^(2)). The mechanism of material bioresorption was established and a model for biodegradation process of Mg-0.8Ca alloy with hydroxyapatite-containing PEO-coating in MEM was proposed. Analysis of these results and comparing with others obtained by various scientific groups indicate the prospects for application of biocompatible PEO-coating on Mg-Ca alloy in implant surgery.
基金the Grant of Russian Science Foundation,Russia(project no.20–13–00130,https://rscf.ru/en/project/20–13–00130/)the Grant of Russian Science Foundation,Russia(project no.21–73–10148,https://rscf.ru/en/project/21–73–10148/)the government assignments from the Ministry of Science and Higher Education of the Russian Federation,Russia(project no.0205–2021–0003)。
文摘The electrochemical behaviour of biodegradable magnesium alloy Mg-0.8Ca was evaluated in a mammalian cell culture medium(MEM)and Na Cl solutions(0.9 wt.%, 0.3 wt.%) using traditional(EIS, PDP, OCP) and local scanning electrochemical(SVET, SIET with p H-selective microelectrode) methods at the micro-and meso-level. Corrosion rates of samples in two different media were determined using weight loss tests. The influence of testing media components, alloy composition and microstructure on the material’s degradation process was determined.The SVET/SIET test parameters were optimized for in vitro investigation of the bioresorbable material surface. The mechanism of the alloy’s bioresorption was suggested. The effect of microsized phases on the corrosion behaviour of the alloy was proved using complementary in situ monitoring and SKPFM measurements. The rapid degradation rate of the alloy is related to the presence of local microgalvanic cells formed by cathodic α-magnesium matrix and anodic Mg_(2)Ca phase. The highest corrosion activity was revealed in the first 12 min of sample exposure to MEM, followed by stabilization of corrosion process due to the material’s passivation. Using SEM-EDX analysis, micro-Raman spectroscopy and XPS analysis the composition of the corrosion products was determined. Degradation in MEM proceeds with a formation of magnesium-and-carbonate substituted hydroxyapatite-containing film on the sample’s surface. The low possibility of application of Mg-0.8Ca alloy without coating protection in implant surgery was highlighted.