期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
基于多模型融合的中长期径流集成预测方法 被引量:1
1
作者 朱非林 陈嘉乙 +2 位作者 张咪 徐向荣 钟平安 《水力发电》 CAS 2024年第2期6-13,29,共9页
中长期水文预报是流域水资源规划与合理配置的重要依据。为提高中长期径流预测精度,提出了一种基于多模型融合的水库中长期径流集成预测方法。该方法将ARMA、BP、LSTM、RF和SVR等5个异质预测模型进行融合,同时采用超参数优化方法确定各... 中长期水文预报是流域水资源规划与合理配置的重要依据。为提高中长期径流预测精度,提出了一种基于多模型融合的水库中长期径流集成预测方法。该方法将ARMA、BP、LSTM、RF和SVR等5个异质预测模型进行融合,同时采用超参数优化方法确定各模型的最优参数。将其用于青海省龙羊峡水库的中长期径流预报中,结果表明,通过Stacking融合算法建立的集成预测模型相较于单一模型,取得了更高的预测精度(R2值由0.71提升至0.82)。此方法可为提升流域中长期径流预测精度提供一定参考。 展开更多
关键词 中长期径流预报 ARMA BP LSTM RF SVR 多模型融合 集成预测 Stacking融合算法 超参数寻优 龙羊峡水库
下载PDF
基于集合Kalman滤波的中长期径流预报
2
作者 刘源 纪昌明 +4 位作者 马皓宇 王弋 张验科 马秋梅 杨涵 《水资源保护》 EI CSCD 北大核心 2024年第1期93-99,共7页
为降低中长期径流预报的不确定性,增加水电站水库的发电效益,针对现有方法侧重于提高单一预报模型确定性预报结果的准确性以降低径流预报不确定性的问题,提出一种基于集合Kalman滤波的入库径流确定性预报方法。以旬为预见期的锦西水库... 为降低中长期径流预报的不确定性,增加水电站水库的发电效益,针对现有方法侧重于提高单一预报模型确定性预报结果的准确性以降低径流预报不确定性的问题,提出一种基于集合Kalman滤波的入库径流确定性预报方法。以旬为预见期的锦西水库实例验证结果表明:相比传统的单一预报模型和传统的信息融合预报模型,基于集合Kalman滤波的中长期径流预报可使RMSE降低4.78 m^(3)/s,合格率可提高0.56%,且更有效地降低了汛期预报的不确定性,得到了更加准确、可靠的确定性径流预报结果,可为开展流域梯级水电站优化调度提供技术支持。 展开更多
关键词 中长期径流预报 数据融合 集合KALMAN滤波 锦西水库
下载PDF
考虑上游来水影响的中长期径流预报 被引量:1
3
作者 李世林 黄炜斌 +3 位作者 陈枭 周开喜 钟璐 曾宏 《水力发电》 CAS 2024年第5期16-20,121,共6页
雅砻江流域地面气象站点不足、分布不均,难以获得精确的流域面降雨资料,加之传统中长期径流预报模型泛化能力有限,中长期径流预报存在较大瓶颈。充分考虑流域水库间的物理联系,基于上下游水库流量变化在时空上的相似性,对1957年~2020年... 雅砻江流域地面气象站点不足、分布不均,难以获得精确的流域面降雨资料,加之传统中长期径流预报模型泛化能力有限,中长期径流预报存在较大瓶颈。充分考虑流域水库间的物理联系,基于上下游水库流量变化在时空上的相似性,对1957年~2020年锦屏一级水库和二滩水库的历史月径流数据进行主成分分析,使用BP人工神经网络、随机森林和支持向量回归3种机器学习方法建立3种径流预报模型,通过决定系数R^(2),合格率Q R以及平均相对误差MRE三项指标构成的评价体系对预测结果进行评估。结果表明,上游水库对于下游水库的入库流量具有显著影响,且3种模型在二滩水库中长期径流预报上均具有较好的预报效果(R^(2)>0.8、Q R>0.7、MRE<0.2)。随机森林模型模拟效果整体优于BP人工神经网络和支持向量回归模型,3种模型均具有较好的实用性,能为流域水资源精细化调度及科学管理提供数据基础。 展开更多
关键词 径流预报 中长期 主成分分析 BP人工神经网络 随机森林 支持向量回归 二滩水库
下载PDF
耦合深度学习的水丰水库入库径流中长期预测方法研究
4
作者 崔杰连 常亮 +3 位作者 赵敏 孟宪明 孙皓晨 董前进 《中国农村水利水电》 北大核心 2024年第8期73-80,共8页
少资料地区径流中长期预测关系发电厂中长期发电量的多寡,也对电厂短期经济运行有较强的指导作用。鸭绿江流域是东北地区重要的清洁能源基地,由于朝鲜控制了鸭绿江流域超过一半的面积,但其径流数据难以与中方共享,给鸭绿江流域径流中长... 少资料地区径流中长期预测关系发电厂中长期发电量的多寡,也对电厂短期经济运行有较强的指导作用。鸭绿江流域是东北地区重要的清洁能源基地,由于朝鲜控制了鸭绿江流域超过一半的面积,但其径流数据难以与中方共享,给鸭绿江流域径流中长期预测带来一定的阻碍。以鸭绿江流域水丰水库入库径流为研究对象,分别采用相空间重构模型(局域法、全局法)、LSTM模型、小波分析-LSTM模型、耦合相空间重构(局域法、全局法)和小波分析模型共6个模型方法对水丰水库旬、月及年尺度入库径流进行中长期径流预报工作,以平均绝对误差、平均绝对百分比误差与合格率对上述6个模型的预测结果进行精度评比。结果表明,年径流预报采用耦合相空间重构(全局法)和小波分析模型;月尺度径流预报中,1月预见期1-5月采用耦合相空间重构(局域法)和小波分析模型以及小波分析-LSTM模型效果较好,而6-12月耦合相空间重构(全局法)和小波分析模型具有明显优势;1年预见期中,小波分析-LSTM模型效果较好。旬尺度径流预测,1旬预见期采用小波分析-LSTM模型效果较好,3旬预见期采用小波分析-LSTM模型或耦合相空间重构(全局法)和小波分析模型,1年预见期中耦合相空间重构(全局法)和小波分析模型有明显优势。研究将为水丰水库及下游发电厂制定中长期调度计划提供支持。 展开更多
关键词 中长期径流预报 相空间重构 小波分析 小波分析-LSTM模型 鸭绿江流域
下载PDF
基于MIKE耦合模型的开都河中短期径流预报
5
作者 刘渤 骆震 +2 位作者 陈伏龙 王统霞 梁文翔 《水资源与水工程学报》 CSCD 北大核心 2024年第5期100-106,113,共8页
为提供开都河水库优化调度和水资源科学管理的依据,应用MIKE耦合模型进行流域中短期径流预报。选取欧洲天气预报中心(ECMWF)气象预报模式作为气象数据输入,构建包含6个子模块(蒸散发、非饱和带、饱和带、坡面流、河流与湖泊)和融雪模块... 为提供开都河水库优化调度和水资源科学管理的依据,应用MIKE耦合模型进行流域中短期径流预报。选取欧洲天气预报中心(ECMWF)气象预报模式作为气象数据输入,构建包含6个子模块(蒸散发、非饱和带、饱和带、坡面流、河流与湖泊)和融雪模块的MIKE SHE模型。将MIKE Hydro river模型作为河道汇流计算与MIKE SHE模型耦合对未来10 d径流信息进行预报。选用相关系数(R^(2))、纳什效率系数(NSE)和相对误差(BAIS)评价模型率定与验证结果,添加预报效率(E)评价模型预报精度。研究表明:在开都河日尺度径流模拟中,验证期R 2和NSE均大于0.70,相对误差仅为-15%,可见模拟径流与实测径流之间具有较好的拟合性和相关性;预报期的NSE=0.53、R^(2)=0.61、E=0.51,说明模拟值与实测值的相关性达0.61。MIKE耦合模型的中短期径流预报可为开都河流域水资源优化利用提供参考。 展开更多
关键词 中短期径流预报 MIKE SHE模型 MIKE Hydro river模型 耦合模型 开都河
下载PDF
流域年径流预报方法及因素影响分析 被引量:2
6
作者 温馨 孙艳 +2 位作者 李昱 唐思维 疏杏胜 《水利水电技术(中英文)》 北大核心 2023年第11期113-123,共11页
【目的】高精度的长期径流预报是水利工程运行的重要基础支撑,然而影响径流预报精度的预报因子选择、模型构建、径流分解中决定性因素不明,阻碍了预报精度的提升。【方法】基于信息熵筛选天文、全球和流域尺度预报因子,分别构建多元线... 【目的】高精度的长期径流预报是水利工程运行的重要基础支撑,然而影响径流预报精度的预报因子选择、模型构建、径流分解中决定性因素不明,阻碍了预报精度的提升。【方法】基于信息熵筛选天文、全球和流域尺度预报因子,分别构建多元线性回归、神经网络、随机森林模型,结合STL算法分解径流,形成多种预报方案,量化预报因子、模型及径流分解三个因素对长期径流预报的贡献。【结果】在英那河、碧流河及桓仁水库的实例研究中,以气候因子、天文因子与流域因子组合(C+A+W)为输入,在对年径流进行分解的前提下利用随机森林模型进行预报,测试集的纳什效率系数分别为0.92、0.84、0.84。在影响因素分析中,预报因子对英那河、碧流河及桓仁水库年径流预报的精度贡献占比分别为0.30、0.30、0.27。【结论】对于三个水库,均是包含三个尺度的预报因子预报精度最高,随机森林模型表现最优,径流分解能一定程度提升预报精度。预报因子的选择是精度的主要影响因素;另外,与预报因子有关的因素之间的相互作用也不容忽视。本文可为长期预报方案的制订和精度提升提供新思路。 展开更多
关键词 长期径流预报 预报因子筛选 数据驱动模型 径流分解 交互影响分析
下载PDF
中小流域暴雨洪水计算及参数地理综合研究进展 被引量:3
7
作者 赵玲玲 刘昌明 +2 位作者 王梓尹 张鑫辉 杨兴 《热带地理》 CSCD 北大核心 2023年第11期2119-2134,共16页
中小流域暴雨洪水计算及其参数综合在洪水灾害防治中起着关键作用。变化环境引发暴雨洪水等水文极值增加,中小流域暴雨洪水灾害面临严峻挑战。文章对中小流域暴雨洪水计算全过程及参数综合研究进展进行系统回顾、梳理和总结,并对目前常... 中小流域暴雨洪水计算及其参数综合在洪水灾害防治中起着关键作用。变化环境引发暴雨洪水等水文极值增加,中小流域暴雨洪水灾害面临严峻挑战。文章对中小流域暴雨洪水计算全过程及参数综合研究进展进行系统回顾、梳理和总结,并对目前常用的产汇流计算方法及其参数在实际应用中存在的问题和局限性进行探讨。流域下垫面和暴雨特性的空间异质性大,产流损失根据其地理特征形成以经验和半经验方法为主的计算方法;汇流计算以推理公式和单位线法为主,流域地形地貌汇流特征能基本反映,但流域形状和微地形在当前计算方法中反映甚少;当前使用的参数成果均由20世纪80年代前的数据得到,限于资料精度和技术水平,参数综合要素较为简单,多地出现不适用现象,亟需开展新一轮的暴雨洪水计算参数综合;在中小流域暴雨洪水过程模拟及实时预报上,结合雷达测雨、高分辨率遥感、高性能计算和深度学习等技术方法的研究已初具规模,建议加强利用新兴技术计算流域产汇流参数,推进其在暴雨洪水设计上的应用。 展开更多
关键词 暴雨 洪水 产汇流计算 参数综合 模拟预报 中小流域
下载PDF
改进的KNN实时校正方法在山区中小流域的应用 被引量:2
8
作者 霍文博 高源 +2 位作者 李致家 金双彦 杨明祥 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第4期27-32,共6页
为提高山区中小流域实时洪水预报精度,提出了一种基于历史洪水学习的KNN实时校正方法(KNN-H法),并选择陕北黄土高原地区2个山区中小流域为研究区域,将其与传统KNN法和AR法进行对比,验证该方法的校正效果。结果表明:KNN法和KNN-H法的校... 为提高山区中小流域实时洪水预报精度,提出了一种基于历史洪水学习的KNN实时校正方法(KNN-H法),并选择陕北黄土高原地区2个山区中小流域为研究区域,将其与传统KNN法和AR法进行对比,验证该方法的校正效果。结果表明:KNN法和KNN-H法的校正精度总体高于AR法;KNN法和AR法不能有效降低预报结果的峰现时间误差,而KNN-H法校正结果峰现时间误差比校正前有明显降低;KNN-H法通过对历史洪水预报误差的学习,可有效解决KNN法在实时校正中因为预热期资料不足导致的校正精度不高问题;当预报洪水过程处于涨洪或退水阶段时,KNN-H法能够快速定位到历史洪水的相同阶段,分析历史预报误差后迅速对当前预报值做出校正;总体上KNN-H法校正精度高于传统KNN法。 展开更多
关键词 KNN实时校正法 洪水预报 山区中小流域 超渗产流模型 陕北地区
下载PDF
基于随机森林与深度神经网络的水库枯季入库径流中长期预报 被引量:1
9
作者 肖三明 刘涛 《广东水利水电》 2023年第7期54-58,共5页
准确可靠的枯季中长期入库径流预报对于指导水库枯水期开展水量调度等具有重要意义。本文以公平水库为研究对象,首先利用随机森林模型(RF)对水文气象因子进行筛选,然后基于深度神经网络模型(DNN)构建水库枯季入库径流中长期预报方案。... 准确可靠的枯季中长期入库径流预报对于指导水库枯水期开展水量调度等具有重要意义。本文以公平水库为研究对象,首先利用随机森林模型(RF)对水文气象因子进行筛选,然后基于深度神经网络模型(DNN)构建水库枯季入库径流中长期预报方案。结果表明:DNN模型对公平水库枯季中长期径流的模拟结果较好,率定期Nash系数为0.952,验证期为0.774,模型具有较强的泛化能力;次年3月的模拟精度较其他月份更优,受异常海温指数的影响,验证期次年1月的模拟结果较差;由于RF模型筛选预报因子侧重点的不同,当量级增大时,DNN模型出现了模拟结果较小量级时明显偏小的情况。 展开更多
关键词 枯季径流 机器学习 中长期径流预报 随机森林 深度神经网络
下载PDF
基于多模型组合方法的公平水库中长期入库径流预报 被引量:1
10
作者 肖三明 刘涛 《江西水利科技》 2023年第5期352-357,共6页
准确可靠的水库中长期预报结果对于指导受水区水资源优化配置等具有重要意义。本文首先选取SARIMA模型、SVM模型、XGBoost模型与RF模型分别构建公平水库月入库径流预报方案,以气象因子的物理机制为基础,在成因分析与随机森林重要性排序... 准确可靠的水库中长期预报结果对于指导受水区水资源优化配置等具有重要意义。本文首先选取SARIMA模型、SVM模型、XGBoost模型与RF模型分别构建公平水库月入库径流预报方案,以气象因子的物理机制为基础,在成因分析与随机森林重要性排序的基础上筛选关键预报因子并输入至4个单一模型中。然后在对比分析各模型优劣的基础上,以线性与非线性组合2种方式构建组合预报方案。结果表明:RF模型在4个单一模型中的模拟结果表现最优,SARIMA模型的模拟精度随着入库径流量的增加而增加;组合预报模型较任一单一模型的模拟结果均更好,基于神经网络的非线性组合方式能够有效提高验证期的模拟精度,增加模型的泛化能力。 展开更多
关键词 入库径流 中长期预报 组合预报 公平水库 线性加权 人工神经网络
下载PDF
漳泽水库兴利调度研究
11
作者 王文浩 申瑜 张蔷 《山西水利科技》 2023年第3期49-51,共3页
建设漳泽水库兴利调度系统能够有效提高水库水资源利用率,缓解水资源“多与少”的矛盾。水库兴利调度的关键在于入库水量预报,采用BP神经网络建立中长期径流预报模型。漳泽水库兴利调度系统以数据库为基础,以预报调度计算为核心,以辅助... 建设漳泽水库兴利调度系统能够有效提高水库水资源利用率,缓解水资源“多与少”的矛盾。水库兴利调度的关键在于入库水量预报,采用BP神经网络建立中长期径流预报模型。漳泽水库兴利调度系统以数据库为基础,以预报调度计算为核心,以辅助防汛抗旱决策为目标,集中服务于水资源管理工作。 展开更多
关键词 BP神经网络 秩相关 秩相似 中长期径流预报 兴利调度
下载PDF
GFS可利用性研究及其在旬径流预报中的应用 被引量:14
12
作者 梁国华 王国利 +1 位作者 王本德 董霞 《水电能源科学》 北大核心 2009年第1期10-13,43,共5页
分析了中长期降雨径流预报研究应用现状和存在的主要问题,研究了利用GFS降雨数值预报信息进行旬径流预报的方法,建立了旬降雨—旬初土壤含水量—旬径流预报模型(PSRM)。通过对实例流域历史旬径流资料的模拟优选出模型参数,分析了GFS降... 分析了中长期降雨径流预报研究应用现状和存在的主要问题,研究了利用GFS降雨数值预报信息进行旬径流预报的方法,建立了旬降雨—旬初土壤含水量—旬径流预报模型(PSRM)。通过对实例流域历史旬径流资料的模拟优选出模型参数,分析了GFS降雨数值预报信息的可利用性,并给出了利用GFS降雨预报信息和PSRM模型推求径流的方法。结果表明,基于GFS预报降雨信息和PSRM模型推求径流期望值和概率分布用于水库的实时调度可行。 展开更多
关键词 GFS PSRM 中长期径流预报 数值降雨预报
下载PDF
基于改进的Elman神经网络的中长期径流预报 被引量:18
13
作者 屈亚玲 周建中 +2 位作者 刘芳 杨俊杰 李英海 《水文》 CSCD 北大核心 2006年第1期45-50,共6页
径流中长期预报长期以来一直都是人们关注的热点研究问题。现行的径流预报方法很多,传统的有时间序列法,多元回归分析法等,这些方法虽然简单易用,但是如果预报对象提供的样本容量偏小或者因子选择不够合理,都会造成预报精度偏差过大,难... 径流中长期预报长期以来一直都是人们关注的热点研究问题。现行的径流预报方法很多,传统的有时间序列法,多元回归分析法等,这些方法虽然简单易用,但是如果预报对象提供的样本容量偏小或者因子选择不够合理,都会造成预报精度偏差过大,难于有效的指导工程应用。鉴于此,本文提出一种改进的采用局部回归的Elman神经网络方法。并应用到凤滩水库优化调度的径流预报中。结果表明,与回归分析法、BP网络相比较,该方法不仅提高了算法的效率,而且提高了预报的精度,在径流预报中具有有效性和优越性。 展开更多
关键词 中长期径流预报 多元回归 BP网络 改进的Elman神经网络
下载PDF
基于相空间重构的支持向量机方法在径流中长期预报中应用 被引量:10
14
作者 刘冀 王本德 +1 位作者 袁晶瑄 周惠成 《大连理工大学学报》 EI CAS CSCD 北大核心 2008年第4期591-595,共5页
水文中长期预报对于水资源规划管理、水库及水电站调度具有十分重要的意义.针对常规混沌预测方法的局限性,提出基于相空间重构的支持向量机(SVM)预报方法.该方法首先对径流时间序列进行混沌辨识,然后对其进行相空间重构,采用基于结构风... 水文中长期预报对于水资源规划管理、水库及水电站调度具有十分重要的意义.针对常规混沌预测方法的局限性,提出基于相空间重构的支持向量机(SVM)预报方法.该方法首先对径流时间序列进行混沌辨识,然后对其进行相空间重构,采用基于结构风险最小化的SVM进行径流预报.对于SVM的参数优选问题,以径向基核函数作为核函数,采用混沌变尺度优化方法进行参数寻优.实例表明,该方法优于SVM和人工神经网络(ANN)预报方法,且具有良好的泛化推广能力. 展开更多
关键词 径流中长期预报 相空间重构 支持向量机 混沌优化 人工神经网络
下载PDF
基于主成分分析的三种中长期预报模型在柘溪水库的应用 被引量:10
15
作者 李薇 周建中 +2 位作者 叶磊 卢韦伟 姚翔宇 《水力发电》 北大核心 2016年第9期17-21,共5页
基于柘溪断面历史旬径流资料,选择1980年-2012年共33a的降雨和流量数据经主成分分析处理后,分别作为多元线性回归模型、BP神经网络模型、Elman神经网络模型的训练样本,对模型参数进行训练;然后对样本进行模拟预报,统计模拟绝对误... 基于柘溪断面历史旬径流资料,选择1980年-2012年共33a的降雨和流量数据经主成分分析处理后,分别作为多元线性回归模型、BP神经网络模型、Elman神经网络模型的训练样本,对模型参数进行训练;然后对样本进行模拟预报,统计模拟绝对误差和相对误差,同时预报柘溪断面2013年、2014年和2015年的年、汛期、季节和月尺度的流量,预报结果可精确到旬尺度,对比分析三种模型各时间尺度的预报结果,最终确定各模型在柘溪流域中长期水文预报过程中的作用。 展开更多
关键词 多元线性回归 BP神经网络 ELMAN神经网络 中长期径流预报 主成分分析 柘溪水库
下载PDF
三峡水库中长期径流预报方法研究 被引量:8
16
作者 李克飞 纪昌明 +1 位作者 张验科 赵璧奎 《水电能源科学》 北大核心 2013年第1期8-11,共4页
中长期径流预报是充分利用水资源、发挥电站经济效益的有力手段。以三峡水库为研究对象,分别采用周期外延叠加技术、人工神经网络模型、投影寻踪自回归模型和支持向量机回归模型对三峡水库逐月入库径流进行预报。从不同侧面比较分析了... 中长期径流预报是充分利用水资源、发挥电站经济效益的有力手段。以三峡水库为研究对象,分别采用周期外延叠加技术、人工神经网络模型、投影寻踪自回归模型和支持向量机回归模型对三峡水库逐月入库径流进行预报。从不同侧面比较分析了这四种方法优劣,并总结各预报模型计算结果的特征及规律,为三峡水库寻求径流预报规律和制定未来中长期调度计划提供了技术支持。 展开更多
关键词 中长期径流预报 周期分析 神经网络 投影寻踪 支持向量机 三峡水库
下载PDF
二滩水电站中长期径流预报研究 被引量:13
17
作者 周惠成 张杨 +2 位作者 唐国磊 王雅军 蹇德平 《水电能源科学》 北大核心 2009年第1期5-9,共5页
针对二滩水电站的实际径流特性和水电站发电调度的要求,应用季节性自回归模型和人工神经网络模型对二滩水电站的月径流、汛期分段和年径流预报进行研究。结果表明,这两种模型对二滩水电站的月径流预报、汛期定性预报均达到了一定精度,... 针对二滩水电站的实际径流特性和水电站发电调度的要求,应用季节性自回归模型和人工神经网络模型对二滩水电站的月径流、汛期分段和年径流预报进行研究。结果表明,这两种模型对二滩水电站的月径流预报、汛期定性预报均达到了一定精度,可为二滩水电站优化调度的径流输入提供参考依据,尤其是AR(P)模型的非汛期月径流预测和BP模型年径流预测结果可在实际运行中使用。 展开更多
关键词 二滩水电站 季节性自回归模型 人工神经网络 中长期径流预报
下载PDF
基于WA-GRNN模型的年径流预测 被引量:20
18
作者 覃光华 宋克超 +1 位作者 周泽江 何清燕 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2013年第6期39-46,共8页
针对传统的中长期水文预测方法由于缺乏对水文要素本身内部结构和变化特性的描述,往往导致建模过程中确定模型结构、参数等存在盲目性,而以往常用预测模型收敛速度较慢、模型结构及参数优化复杂等问题,将小波分析(WA)和GRNN神经网络联... 针对传统的中长期水文预测方法由于缺乏对水文要素本身内部结构和变化特性的描述,往往导致建模过程中确定模型结构、参数等存在盲目性,而以往常用预测模型收敛速度较慢、模型结构及参数优化复杂等问题,将小波分析(WA)和GRNN神经网络联合使用,建立了中长期水文预测模型:即先应用WA揭示水文序列内部结构及变化特性,从而将原序列分为确定性成分和随机成分两部分,然后利用GRNN神经网络对确定性成分和随机成分分别进行模拟预测,最后将两部分结果叠加作为最终预测值。将该模型用于沱江中上游三皇庙水文站年径流的预测,并与传统方法进行对比。结果显示该模型预测效果较传统方法更好,能有效地揭示序列的时频结构和变化特性,对于生产应用具有较强的实际意义。 展开更多
关键词 GRNN神经网络 小波分析 年径流 中长期预测 水文时间序列
下载PDF
基于信息熵与改进极限学习机的中长期径流预测 被引量:10
19
作者 岳兆新 艾萍 +3 位作者 熊传圣 宋艳红 洪敏 于家瑞 《水利水电科技进展》 CSCD 北大核心 2021年第4期7-14,共8页
为提高流域中长期径流预测精度,提出一种基于信息熵与改进极限学习机的中长期径流预测方法。首先,基于不同水文站点的流域控制面积构造径流综合指数,在较宏观层面表征流域水情丰枯变化;其次,采用偏互信息法计算影响对象与径流综合指数... 为提高流域中长期径流预测精度,提出一种基于信息熵与改进极限学习机的中长期径流预测方法。首先,基于不同水文站点的流域控制面积构造径流综合指数,在较宏观层面表征流域水情丰枯变化;其次,采用偏互信息法计算影响对象与径流综合指数之间的相关性,获得径流过程变化的关键因子集,形成预测模型输入;最后,结合K折交叉验证与改进粒子群算法优化极限学习机(ELM)参数,构建IPSO-ELM模型,用于中长期径流预测。以雅砻江流域为例,将所建模型与BP神经网络(BPNN)、支持向量机(SVM)、ELM和PSO-ELM等预测模型进行对比分析。结果表明:所提模型的E_(mape)、E_(rmse)、E_(dc)、E_(qr)和E_(re)等性能评价指标明显优于上述4种模型;5种预测模型在D1数据集上的预测效果整体上胜于D2。 展开更多
关键词 中长期径流预测 径流综合指数 偏互信息法 粒子群 极限学习机 预测模型
下载PDF
基于Web的径流中长期预报系统 被引量:3
20
作者 林剑艺 程春田 +2 位作者 贺媛媛 蔡华祥 蔡建章 《水电能源科学》 2005年第5期5-7,21,共4页
以云南电网水调高级应用软件系统为工程背景,采用面向对象的编程思想开发了B/S模式下的径流中长期预报系统。系统涉及云南电网所属的5座主力水电站及其他重要的中小水电站,采用四种常用的中长期预报模型和频率分析方法进行径流预报。系... 以云南电网水调高级应用软件系统为工程背景,采用面向对象的编程思想开发了B/S模式下的径流中长期预报系统。系统涉及云南电网所属的5座主力水电站及其他重要的中小水电站,采用四种常用的中长期预报模型和频率分析方法进行径流预报。系统主要功能包括预报参数率定和检验、多种预报方法间的比较分析、与历史径流过程的对比分析、基础资料添加维护与报表生成等。系统操作简便、功能强大,同时具有良好的稳定性、移植性和可扩展性。 展开更多
关键词 径流中长期预报 B/S模式 水电站 模型预报 频率预报
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部