Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd ju...Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd juices were investigated. Results showed that the processing factors such as pressure, temperature, pH and processing time are important to the POD activity. POD in crude juices could be inactivated apparently above 50 MPa(pH 4.6, 35℃, 4 min), and activated at 20 MPa ( P < 0.01). Its remarkable inactivation could also be observed at 45 and 55℃ (20 MPa, pH 4.6, 4 min), and the evident activation appears at the material temperature 35℃ ( P < 0.01). The pH 3.0 could destroy POD almost completely (20 MPa, 35℃, 4 min), while pH 6.0 could not influence apparently the POD activity in crude juices( P > 0.05). In addition, the rules of POD activity along with the treatment time are variational under different processing pressures. The higher the treating pressure is, the shorter the processing time is needed to inactivate POD.展开更多
Based on the instantaneous high-pressure(IHP)produced by high-pressure single pole-cylinder pump, the effects of combining this pressure with medium temperature on the retention of total vitamin C(Vc)in wax gourd juic...Based on the instantaneous high-pressure(IHP)produced by high-pressure single pole-cylinder pump, the effects of combining this pressure with medium temperature on the retention of total vitamin C(Vc)in wax gourd juices were investigated under 20 - 80 MPa, 35 - 58℃, pH 3. 0 - 6. 0 and processing time 0-8 min. Results showed that the loss of Vc increased with elevated processing temperatures(50 MPa, 4 min). When the temperature of raw juices was 35℃, the retention of total Vc was higher under 40 - 60 MPa than that under the pressure < 40 MPa or > 60 MPa, and it was up to 94%(4 min). The retention of total Vc decreases slowly within 6 min, but rapidly after 6 min. The pH can also influence the retention of total Vc, and this retention can come to a highest point at pH 6.0.展开更多
Low-temperature thermal energy conversions down to exergy zero to electric power must contribute energy sustainability. That is to say, reinforcements of power harvesting technologies from extremely low temperatures l...Low-temperature thermal energy conversions down to exergy zero to electric power must contribute energy sustainability. That is to say, reinforcements of power harvesting technologies from extremely low temperatures less than 373 K might be at least one of minimum roles for the current generations. Then, piezoelectric power harvesting process for recovering low-temperature heats was invented by using a unique biphasic operating medium of an underlying water-insoluble/low-boiling-point medium (i.e. NOVEC manufactured by 3M Japan Ltd.) in small quantity and upper-layered water in large quantity. The higher piezoelectric power harvesting densities were naturally revealed with an increase in heating temperatures. Excessive cooling of the operating medium deteriorated the power harvesting efficiency. The denser operating medium was surpassingly helpful to the higher piezoelectric power harvesting density. Concretely, only about 5% density increase of main operating medium (i.e. water with dissolving alum at 0.10 mol/dm3) came to the champion piezoelectric power harvesting density of 92.6 pW/dm2 in this study, which was about 1.4 times compared to that with the original biphasic medium of pure water together with a small quantity of NOVEC.展开更多
Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temp...Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temperature heats is one of the urgent tasks for the current generation in order to accomplish energy sustainability in the coming decades. In this study, a liquid turbine power generator driven by lower temperature heats below 373 K was proposed in the aim of expanding selectable options for harvesting low temperature waste heats less than 373 K. The proposing system was so simply that it was mainly composed of a liquid turbine, a liquid container with a biphasic medium of water and an underlying water-insoluble low-boiling-point medium in a liquid phase, a heating section for vaporization of the liquid and a cooling section for entropy discharge outside the system. Assumed power generating steps via the proposing liquid turbine power generator were as follows: step 1: the underlying low-boiling-point medium in a liquid phase was vaporized, step 2: the surfacing vapor bubbles of low-boiling-point medium accompanied the biphasic medium in their wakes, step 3: such high momentum flux by step 2 rotated the liquid turbine (i.e. power generation), step 4: the surfacing low-boiling-point medium vapor was gradually condensed into droplets, step 5: the low-boiling-point medium droplets were submerged to the underlying medium in a liquid phase. Experiments with a prototype liquid turbine power generator proved power generations in accordance with the assumed steps at a little higher than ordinary temperature. Increasing output voltage could be obtained with an increase in the cooling temperature among tested ranging from 294 to 296 K in contrast to normal thermal engines. Further improvements of the direct current voltage from the proposing liquid turbine power generator can be expected by means of far more vigorous multiphase flow induced by adding solid powders and theoretical optimizations of heat and mass transfers.展开更多
Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is a...Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford [12], is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Péclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case by Ratts and Rant [14].展开更多
文摘Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd juices were investigated. Results showed that the processing factors such as pressure, temperature, pH and processing time are important to the POD activity. POD in crude juices could be inactivated apparently above 50 MPa(pH 4.6, 35℃, 4 min), and activated at 20 MPa ( P < 0.01). Its remarkable inactivation could also be observed at 45 and 55℃ (20 MPa, pH 4.6, 4 min), and the evident activation appears at the material temperature 35℃ ( P < 0.01). The pH 3.0 could destroy POD almost completely (20 MPa, 35℃, 4 min), while pH 6.0 could not influence apparently the POD activity in crude juices( P > 0.05). In addition, the rules of POD activity along with the treatment time are variational under different processing pressures. The higher the treating pressure is, the shorter the processing time is needed to inactivate POD.
文摘Based on the instantaneous high-pressure(IHP)produced by high-pressure single pole-cylinder pump, the effects of combining this pressure with medium temperature on the retention of total vitamin C(Vc)in wax gourd juices were investigated under 20 - 80 MPa, 35 - 58℃, pH 3. 0 - 6. 0 and processing time 0-8 min. Results showed that the loss of Vc increased with elevated processing temperatures(50 MPa, 4 min). When the temperature of raw juices was 35℃, the retention of total Vc was higher under 40 - 60 MPa than that under the pressure < 40 MPa or > 60 MPa, and it was up to 94%(4 min). The retention of total Vc decreases slowly within 6 min, but rapidly after 6 min. The pH can also influence the retention of total Vc, and this retention can come to a highest point at pH 6.0.
文摘Low-temperature thermal energy conversions down to exergy zero to electric power must contribute energy sustainability. That is to say, reinforcements of power harvesting technologies from extremely low temperatures less than 373 K might be at least one of minimum roles for the current generations. Then, piezoelectric power harvesting process for recovering low-temperature heats was invented by using a unique biphasic operating medium of an underlying water-insoluble/low-boiling-point medium (i.e. NOVEC manufactured by 3M Japan Ltd.) in small quantity and upper-layered water in large quantity. The higher piezoelectric power harvesting densities were naturally revealed with an increase in heating temperatures. Excessive cooling of the operating medium deteriorated the power harvesting efficiency. The denser operating medium was surpassingly helpful to the higher piezoelectric power harvesting density. Concretely, only about 5% density increase of main operating medium (i.e. water with dissolving alum at 0.10 mol/dm3) came to the champion piezoelectric power harvesting density of 92.6 pW/dm2 in this study, which was about 1.4 times compared to that with the original biphasic medium of pure water together with a small quantity of NOVEC.
文摘Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temperature heats is one of the urgent tasks for the current generation in order to accomplish energy sustainability in the coming decades. In this study, a liquid turbine power generator driven by lower temperature heats below 373 K was proposed in the aim of expanding selectable options for harvesting low temperature waste heats less than 373 K. The proposing system was so simply that it was mainly composed of a liquid turbine, a liquid container with a biphasic medium of water and an underlying water-insoluble low-boiling-point medium in a liquid phase, a heating section for vaporization of the liquid and a cooling section for entropy discharge outside the system. Assumed power generating steps via the proposing liquid turbine power generator were as follows: step 1: the underlying low-boiling-point medium in a liquid phase was vaporized, step 2: the surfacing vapor bubbles of low-boiling-point medium accompanied the biphasic medium in their wakes, step 3: such high momentum flux by step 2 rotated the liquid turbine (i.e. power generation), step 4: the surfacing low-boiling-point medium vapor was gradually condensed into droplets, step 5: the low-boiling-point medium droplets were submerged to the underlying medium in a liquid phase. Experiments with a prototype liquid turbine power generator proved power generations in accordance with the assumed steps at a little higher than ordinary temperature. Increasing output voltage could be obtained with an increase in the cooling temperature among tested ranging from 294 to 296 K in contrast to normal thermal engines. Further improvements of the direct current voltage from the proposing liquid turbine power generator can be expected by means of far more vigorous multiphase flow induced by adding solid powders and theoretical optimizations of heat and mass transfers.
文摘Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford [12], is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Péclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case by Ratts and Rant [14].