Multilevel voltage source converters(MLVSCs)have been widely applied in the medium voltage drive(MVD)industry.The performance of a MVD system is strongly dependent on the utilized topology.As of today,many interesting...Multilevel voltage source converters(MLVSCs)have been widely applied in the medium voltage drive(MVD)industry.The performance of a MVD system is strongly dependent on the utilized topology.As of today,many interesting topologies have been proposed and evaluated in literature.In addition to proposing new topologies,another important research topic is the MLVSC topology derivation.In this paper,two topology derivation principles,i.e.horizontal conformation principle and vertical conformation principle,are proposed from the standpoint of modularity.In both principles,a MLVSC topology can be considered as a certain combination of one base switching cell and several module switching cells.With the proposed principle,the derived topology will naturally have modularity,which is favorable in practical applications.In addition,voltage level extension based on cascaded H-bridge building blocks(HBBBs)is also introduced.The challenging issues faced by the emerging topologies for MVD applications are also discussed.It is hoped that this paper can provide a new perspective on the MLVSC topology derivation and inspire new topologies in the future.展开更多
文摘Multilevel voltage source converters(MLVSCs)have been widely applied in the medium voltage drive(MVD)industry.The performance of a MVD system is strongly dependent on the utilized topology.As of today,many interesting topologies have been proposed and evaluated in literature.In addition to proposing new topologies,another important research topic is the MLVSC topology derivation.In this paper,two topology derivation principles,i.e.horizontal conformation principle and vertical conformation principle,are proposed from the standpoint of modularity.In both principles,a MLVSC topology can be considered as a certain combination of one base switching cell and several module switching cells.With the proposed principle,the derived topology will naturally have modularity,which is favorable in practical applications.In addition,voltage level extension based on cascaded H-bridge building blocks(HBBBs)is also introduced.The challenging issues faced by the emerging topologies for MVD applications are also discussed.It is hoped that this paper can provide a new perspective on the MLVSC topology derivation and inspire new topologies in the future.