Decarbonization of the power sector in China is an essential aspect of the energy transition process to achieve carbon neutrality.The power sector accounts for approximately 40%of China’s total CO_(2) emissions.Accor...Decarbonization of the power sector in China is an essential aspect of the energy transition process to achieve carbon neutrality.The power sector accounts for approximately 40%of China’s total CO_(2) emissions.Accordingly,collaborative optimization in power generation expansion planning(GEP)simultaneously considering economic,environmental,and technological concerns as carbon emissions is necessary.This paper proposes a collaborative mixedinteger linear programming optimization approach for GEP.This minimizes the power system’s operating cost to resolve emission concerns considering energy development strategies,flexible generation,and resource limitations constraints.This research further analyzes the advantages and disadvantages of current GEP techniques.Results show that the main determinants of new investment decisions are carbon emissions,reserve margins,resource availability,fuel consumption,and fuel price.The proposed optimization method is simulated and validated based on China’s power system data.Finally,this study provides policy recommendations on the flexible management of traditional power sources,the market-oriented mechanism of new energy sources,and the integration of new technology to support the attainment of carbon-neutral targets in the current energy transition process.展开更多
The paper presents the main features of transmission expansion problem (TEP). In accord with review the aims and influencing factors are defined. The competitive behaviors of market participants, transmission losses, ...The paper presents the main features of transmission expansion problem (TEP). In accord with review the aims and influencing factors are defined. The competitive behaviors of market participants, transmission losses, discrete investment costs, various operating conditions are considered in the model. The model is a mixed-integer linear programming formulation for a static TEP in the competitive environment. The presented methodology is applied to six-node system. In order to point out efficiency of the model the results obtained are compared with traditional problem solution.展开更多
The"Ninth Five-Year Plan for theNational Economy and SocialDevelopment and the Long-TermTarget by the Year 2010" adopted at theFourth Session of the Eighth National People’sCongress have opened up a vast ne...The"Ninth Five-Year Plan for theNational Economy and SocialDevelopment and the Long-TermTarget by the Year 2010" adopted at theFourth Session of the Eighth National People’sCongress have opened up a vast new worldfor the development of China’s food industry.The food industry should seize the opportunityto strengthen itself and speed up itsdevelopment for meeting the needs ofimproving the people’s living standards andperform well in modernized socialistconstruction.展开更多
A number of piping components in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, SPE (Solid Particle Erosion), LDIE (Liquid ...A number of piping components in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, SPE (Solid Particle Erosion), LDIE (Liquid Droplet Impingement Erosion), etc. Those mechanisms may lead to thinning, leak, or rupture of the components. Due to the pipe ruptures caused by wall thinning in Surry unit 2 of USA in 1986 and in Mihama unit 3 of Japan in 1994, the pipe wall thinning management has emerged as one of the most important issues in nuclear power plants. To manage the pipe wall thinning in the secondary system, Korea has used a foreign program since 1996. As using the foreign country’s program for long term, it was necessary to improve from the perspective of the users. Accordingly, KEPCO-E & C has started to develop the 3D-based pipe wall thinning management program (ToSPACE, Total Solution for Piping And Component Engineering management) from eight years ago, and the development was successful. This paper describes the major functions included in ToSPACE program, such as 3D-based DB (Database) buildup, development of FAC and erosion evaluation theories, UT (Ultra-sonic Test) data reliability analysis, field connection with 3D, automatic establishment of long-term inspection plan, etc. ToSPACE program was developed to allow site engineers performing the selection of inspection quantity at each refueling outage, UT data reliability analysis, UT evaluation, determination of next inspection timing, identification of the inspecting and replacing components in 3D drawings, etc., to access easily.展开更多
In this paper, the principle and methods of system engineering are applied to studying the problem of educational long-term development planning. a complete mathematical-simulated model setup is adopted to describe th...In this paper, the principle and methods of system engineering are applied to studying the problem of educational long-term development planning. a complete mathematical-simulated model setup is adopted to describe the internal regularity between educational system and social economic macrosystem. and then. a set of effective methods are put forward to carry out educational planning. This model has been actually appliedcation in the project of educational planning research in Chongqing region,展开更多
A power system with a high wind power integration requires extra transmission capacity to accommodate the intermittency inherent to wind power production.Storage can smooth out this intermittency and reduce transmissi...A power system with a high wind power integration requires extra transmission capacity to accommodate the intermittency inherent to wind power production.Storage can smooth out this intermittency and reduce transmission requirements.This paper proposes a stochastic optimization model to coordinate the long-term planning of both transmission and storage facilities to efficiently integrate wind power.Both longterm and short-term uncertainties are considered in this model.Long-term uncertainty is described via scenarios,while shortterm uncertainty is described via operating conditions.Garver’s 6-node system and a system representing Northwest China in 2030 are used to illustrate the proposed model.Results indicate that storage reduces transmission requirement and the overall investment,and allows the efficient integration of wind power.展开更多
Rapid fertility decline and rising life expectancy are leading to a fast and profound aging of China's population. This paper will attempt to analyze the long-term economic impact of population aging. After discussin...Rapid fertility decline and rising life expectancy are leading to a fast and profound aging of China's population. This paper will attempt to analyze the long-term economic impact of population aging. After discussing its impact on employment, domestic consumption, social security programs and public finance, rural-urban migration and urbanization, the Chinese economy's comparative advantage in international markets and structural change in industry, we suggest alternative policies of gradually relaxing the fertility control policy, assigning higher priority to the development of human capital, raising the compulsory retirement age, and improving the equity and efficiency of social security programs.展开更多
With the increasing interactions between natural gas systems(NGS)and power systems,component failures in one system may propagate to the other one,threatening reliable operation of the whole system.Due to neglect of s...With the increasing interactions between natural gas systems(NGS)and power systems,component failures in one system may propagate to the other one,threatening reliable operation of the whole system.Due to neglect of such cross-sectorial failure propagation in integrated electricity-gas systems(IEGSs),traditional economy-oriented reserve expansion models may lead to unreasonable planning results.In order to address this,an innovative reserve expansion model is proposed to determine the allocation of energy production components through the harmonization between costs and reliability.First,novel multifactor-influenced reliability indices are defined con-sidering synthetic effects of multiple uncertainties,including failure propagation,load uncertainties and generation failures.In reliability index formulation,contribution of failure propagation on system reliability is analytically expressed.To avoid high computational complexity,the fuzzy set theory is combined with conventional methods,e.g.,Monte-Carlo simulation technique to reduce numerous contingency states.Sampled contingency states are aggregated into several clusters represented by a fuzzy number.To effectively solve the planning model,a decomposition approach is introduced and applied to decompose the original problem into a master problem and two correlated reliability sub-problems.Numerical studies show the proposed model can plan reasonable reserves to guarantee reliability levels of IEGSs considering failure propagation.展开更多
基金supported by the Natural Science Foundation of Shandong Province (No.ZR2019MEE078)Education and Teaching Reform Research Project of Shandong University (“Development of an experiment platform to support the intelligent energy courses”)。
文摘Decarbonization of the power sector in China is an essential aspect of the energy transition process to achieve carbon neutrality.The power sector accounts for approximately 40%of China’s total CO_(2) emissions.Accordingly,collaborative optimization in power generation expansion planning(GEP)simultaneously considering economic,environmental,and technological concerns as carbon emissions is necessary.This paper proposes a collaborative mixedinteger linear programming optimization approach for GEP.This minimizes the power system’s operating cost to resolve emission concerns considering energy development strategies,flexible generation,and resource limitations constraints.This research further analyzes the advantages and disadvantages of current GEP techniques.Results show that the main determinants of new investment decisions are carbon emissions,reserve margins,resource availability,fuel consumption,and fuel price.The proposed optimization method is simulated and validated based on China’s power system data.Finally,this study provides policy recommendations on the flexible management of traditional power sources,the market-oriented mechanism of new energy sources,and the integration of new technology to support the attainment of carbon-neutral targets in the current energy transition process.
文摘The paper presents the main features of transmission expansion problem (TEP). In accord with review the aims and influencing factors are defined. The competitive behaviors of market participants, transmission losses, discrete investment costs, various operating conditions are considered in the model. The model is a mixed-integer linear programming formulation for a static TEP in the competitive environment. The presented methodology is applied to six-node system. In order to point out efficiency of the model the results obtained are compared with traditional problem solution.
文摘The"Ninth Five-Year Plan for theNational Economy and SocialDevelopment and the Long-TermTarget by the Year 2010" adopted at theFourth Session of the Eighth National People’sCongress have opened up a vast new worldfor the development of China’s food industry.The food industry should seize the opportunityto strengthen itself and speed up itsdevelopment for meeting the needs ofimproving the people’s living standards andperform well in modernized socialistconstruction.
文摘A number of piping components in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, SPE (Solid Particle Erosion), LDIE (Liquid Droplet Impingement Erosion), etc. Those mechanisms may lead to thinning, leak, or rupture of the components. Due to the pipe ruptures caused by wall thinning in Surry unit 2 of USA in 1986 and in Mihama unit 3 of Japan in 1994, the pipe wall thinning management has emerged as one of the most important issues in nuclear power plants. To manage the pipe wall thinning in the secondary system, Korea has used a foreign program since 1996. As using the foreign country’s program for long term, it was necessary to improve from the perspective of the users. Accordingly, KEPCO-E & C has started to develop the 3D-based pipe wall thinning management program (ToSPACE, Total Solution for Piping And Component Engineering management) from eight years ago, and the development was successful. This paper describes the major functions included in ToSPACE program, such as 3D-based DB (Database) buildup, development of FAC and erosion evaluation theories, UT (Ultra-sonic Test) data reliability analysis, field connection with 3D, automatic establishment of long-term inspection plan, etc. ToSPACE program was developed to allow site engineers performing the selection of inspection quantity at each refueling outage, UT data reliability analysis, UT evaluation, determination of next inspection timing, identification of the inspecting and replacing components in 3D drawings, etc., to access easily.
文摘In this paper, the principle and methods of system engineering are applied to studying the problem of educational long-term development planning. a complete mathematical-simulated model setup is adopted to describe the internal regularity between educational system and social economic macrosystem. and then. a set of effective methods are put forward to carry out educational planning. This model has been actually appliedcation in the project of educational planning research in Chongqing region,
基金supported jointly by US NSF grant(No.1548015)National Science Foundation of China(No.51325702)Scientific&Technical Project of State Grid(No.52020114026C).
文摘A power system with a high wind power integration requires extra transmission capacity to accommodate the intermittency inherent to wind power production.Storage can smooth out this intermittency and reduce transmission requirements.This paper proposes a stochastic optimization model to coordinate the long-term planning of both transmission and storage facilities to efficiently integrate wind power.Both longterm and short-term uncertainties are considered in this model.Long-term uncertainty is described via scenarios,while shortterm uncertainty is described via operating conditions.Garver’s 6-node system and a system representing Northwest China in 2030 are used to illustrate the proposed model.Results indicate that storage reduces transmission requirement and the overall investment,and allows the efficient integration of wind power.
文摘Rapid fertility decline and rising life expectancy are leading to a fast and profound aging of China's population. This paper will attempt to analyze the long-term economic impact of population aging. After discussing its impact on employment, domestic consumption, social security programs and public finance, rural-urban migration and urbanization, the Chinese economy's comparative advantage in international markets and structural change in industry, we suggest alternative policies of gradually relaxing the fertility control policy, assigning higher priority to the development of human capital, raising the compulsory retirement age, and improving the equity and efficiency of social security programs.
基金the China NSFC under Grant 71871200National Natural Science Foundation China and Joint Programming Initiative Urban Europe Call(NSFC-JPI UE)under grant 71961137004。
文摘With the increasing interactions between natural gas systems(NGS)and power systems,component failures in one system may propagate to the other one,threatening reliable operation of the whole system.Due to neglect of such cross-sectorial failure propagation in integrated electricity-gas systems(IEGSs),traditional economy-oriented reserve expansion models may lead to unreasonable planning results.In order to address this,an innovative reserve expansion model is proposed to determine the allocation of energy production components through the harmonization between costs and reliability.First,novel multifactor-influenced reliability indices are defined con-sidering synthetic effects of multiple uncertainties,including failure propagation,load uncertainties and generation failures.In reliability index formulation,contribution of failure propagation on system reliability is analytically expressed.To avoid high computational complexity,the fuzzy set theory is combined with conventional methods,e.g.,Monte-Carlo simulation technique to reduce numerous contingency states.Sampled contingency states are aggregated into several clusters represented by a fuzzy number.To effectively solve the planning model,a decomposition approach is introduced and applied to decompose the original problem into a master problem and two correlated reliability sub-problems.Numerical studies show the proposed model can plan reasonable reserves to guarantee reliability levels of IEGSs considering failure propagation.