Preparation of electronic grade manganese sulfate from ferromanganese slag, including grinding, leaching and purification, was studied. The impurities, such as Fe3+, Al3+, Ca2+, Mg2+, heavy metal ions and Na+, K+, wer...Preparation of electronic grade manganese sulfate from ferromanganese slag, including grinding, leaching and purification, was studied. The impurities, such as Fe3+, Al3+, Ca2+, Mg2+, heavy metal ions and Na+, K+, were removed from leaching solution by neutralized-hydrolysis, fluorination precipitation, sulfuration precipitation and re-crystallization. Effects of pH of reaction, temperature and dosage of the different additives on removal rates of the metallic ions in leaching solution were investigated, and the suitable temperature, pH and the added amount of precipitating agent were obtained. The prepared manganese sulfate product, of which the mass fractions of Ca2+, Mg2+, Na+, K+ are all smaller than 0.005%, the mass fractions of Fe3+, Al3+ and heavy metal ions are smaller than 0.001%, and the mass fraction of Mn2+ is greater than 32%, can meet the demand of anode materials of lithium-ion batteries.展开更多
In 2001, the International Seabed Authority (ISBA) initiated the consideration relating to the Regulations for Prospecting and Exploration for Hydrothermal Polymetallic Sulphides and Cobalt-rich Ferromanganese Crust...In 2001, the International Seabed Authority (ISBA) initiated the consideration relating to the Regulations for Prospecting and Exploration for Hydrothermal Polymetallic Sulphides and Cobalt-rich Ferromanganese Crusts in the Area at its 7th session. Since then, the consideration of the Regulations has been mainly focused on the size of areas to be allocated for exploration and exploitation of the crusts. This paper, based on the investigation data and the analysis of the distribution characteristics of the crusts, suggests a model for determining the size of areas for exploration and exploitation of the crusts, taking into account various factors such as production scale, crust thickness and grade, mineable area proportion, recovery efficiency, exploration venture, and so on. Through the modeling, the paper suggests that the exploration area (the area covered by each application for approval of a plan of work for exploration of cobalt-rich crusts) shall be 4 856 km2 and the exploitation area (the mine site area) shall be 1 214 km2, for 20 years of 1 million wet tonnes annual production.展开更多
The relation of Lp(the ratio P content in slag to P content in ferromanganese) and L,(the ratio Mn content in slag to Mn content in ferromanganese) with C content[C]in ferromanganese were tested by means of the equili...The relation of Lp(the ratio P content in slag to P content in ferromanganese) and L,(the ratio Mn content in slag to Mn content in ferromanganese) with C content[C]in ferromanganese were tested by means of the equilibrium experiments of P and Mn between ferromanganese and BaO-BaF-MnO slag system.The results show that there exists in ferromanganese an optimum C content[C]* corresponding to maximum Land minimum L> which is closely related to oxygen potential in the system and the activity of P in the alloy.The control limits of oxygen potential in dephosphorization of ferromanganese are then analyzed.The theoretical limits and measures to improve ferromanganese dephosphorization with BaO-based slag are studied comprehensively based on previous research.展开更多
Noble gas isotopic compositions of various layers in three-layered (outer, porous and compact layers) cobalt-rich ferromanganese crusts and their basaltic and phosphorite substrates from the western Pacific Ocean we...Noble gas isotopic compositions of various layers in three-layered (outer, porous and compact layers) cobalt-rich ferromanganese crusts and their basaltic and phosphorite substrates from the western Pacific Ocean were analyzed by using a high vacuum gas mass spectrum. The analytical results show that the noble gases in the Co-rich crusts have derived mainly from the ambient seawater, extraterrestrial grains such as interplanetary dust particles (IDPs) and wind-borne continental dust grains, and locally formation water in the submarine sediments, but different noble gases have different sources. He in the crusts derives predominantly from the extraterrestrial grains, with a negligible amount of radiogenic He from the eolian dust grains. Ar is sourced mainly from the dissolved air in the seawater and insignificantly from radiogenic Ar in the eolian continental dust grains or the formation water. Xe and Ne derive mainly from the seawater, with minor amounts of extraterrestrial Xe and Ne in the IDPs. Compared with the porous and outer layers, the compact layer has a relatively high 4He content and lower 3He/4He ratios, suggesting that marine phosphatization might have greatly modified the noble gas isotopic compositions of the crusts. Besides, the 3He/4He values of the basaltic substrates of the cobalt-rich crusts are very low and their R/R. ratios are mostly 〈0.1 R., which are similar to that of phosphorite substrates (0.087 R.), but much lower than that of fresh submarine MORB (8.75±14 Ra) or seamount basalts (3-43 Ra), implying that the basaltic substrates have suffered strong water/rock interaction and reacted with radiogenic ^4He and P-rich upwelling marine currents during phosphatization. The trace elements released in the basalt/seawater interaction might favor the growth of cobalt-rich crusts. The relatively low ^3He/^4He values in the seamount basalts may be used as an important exploration criterion for the cobalt-rich ferromanganese crusts.展开更多
Marine hydrogenous ferromanganese crust, an important metal resource in the future, has significant potential in various applications as a type of natural nano-structured material. By employing scanning electronic mic...Marine hydrogenous ferromanganese crust, an important metal resource in the future, has significant potential in various applications as a type of natural nano-structured material. By employing scanning electronic microscopy, nitrogen adsorption-desorption isotherm measurement, Xray fluorescence spectrometer and X-ray diffraction methods, the micro-structure, surface properties and chemical composition of several plate-like ferromanganese crusts sampled from the northwestern Pacific were investigated comprehensively. Although obvious differences were observed from different layers, the crust is a typical porous material with high specific surface area, unique pore structure and abundant transition elements. Furthermore, the performance of natural crust in desulfurization process was preliminarily tested in laboratory experiments. The suffur capacities of the crust are 13.1% and 18.1% at room temperature and 350 ℃, respectively. The crust can be used not only as a metal resource, but also as an environmental material.展开更多
In the present paper, iodine (I), iron (Fe), manganese (Mn), cobalt (Co), phosphorus (P) and calcium (Ca) contents in three ferromanganese crusts from the Pacific Ocean are measured by spectrophotometric m...In the present paper, iodine (I), iron (Fe), manganese (Mn), cobalt (Co), phosphorus (P) and calcium (Ca) contents in three ferromanganese crusts from the Pacific Ocean are measured by spectrophotometric method and inductively coupled plasma atomic emission spectrometers (ICP-AES) to investigate the contents and distribution of iodine in ferromanganese crusts. The results show that iodine contents in three crusts vary between 27.1 and 836 mg/kg, with an average of 172 mg/kg, and the profile of iodine in the three crusts all exhibits a two-stage distribution zone: a young non-phosphatized zone and an old phosphatized zone that is rich in I, P and Ca. The iodine content ratios of old to young zone in MP5D44, CXD62-1 and CXD08-1 are 2.3, 3.4 and 13.7, respectively. The boundary depths of two-stage zone in MP5D44, CXD62-1 and CXD08-1 locate at 4.0 cm, 2.5 cm and 3.75 cm, respectively, and the time of iodine mutation in three crusts ranges from 17-37 Ma derived from 129I dating and Co empirical formula, which is consistent with the times of Cenozoic phosphatization events. The present study shows that the intensity of phosphatization is the main responsible for the distribution pattern of iodine in the crusts on the basis of the correlation analysis. Consequently, iodine is a sensitive indicator for phosphatization.展开更多
Cobalt-rich ferromanganese is an important seafloor mineral and is abundantly present in the seamount crusts. Such crusts form potential hotspots for biogeochemical activity and microbial diversity, yet our understand...Cobalt-rich ferromanganese is an important seafloor mineral and is abundantly present in the seamount crusts. Such crusts form potential hotspots for biogeochemical activity and microbial diversity, yet our understanding of their microbial communities is lacking. In this study, a cultivation-independent approach was used to recover genomic information and derive ecological functions of the microbes in a sediment sample collected from the cobalt-rich ferromanganese crust of a seamount region in the central Pacific. A total of 78 distinct clones were obtained by fosmid library screening with a 16S rRNA based PCR method. Proteobacteria and MGI Thaumarch-aeota dominated the bacterial and archaeal 16S rRNA gene sequence results in the microbial community. Nine fosmid clones were sequenced and annotated. Numerous genes encoding proteins involved in metabolic functions and heavy metal resistance were identified, suggesting alternative metabolic pathways and stress responses that are essential for microbial survival in the cobalt-rich ferromanganese crust. In addition, genes that participate in the synthesis of organic acids and exoploymers were discovered. Reconstruction of the metabolic pathways revealed that the nitrogen cycle is an important biogeochemical process in the cobalt-rich ferromanganese crust. In addition, horizontal gene transfer (HGT) events have been observed, and most of them came from bacteria, with some occurring in archaea and plants. Clone W4-93a, belonging to MGI Thaumarch-aeota, contained a region of gene synteny. Comparative analyses suggested that a high frequency of HGT events as well as genomic divergence play important roles in the microbial adaption to the deep-sea environment.展开更多
Ferromanganese nodules and crusts contain relatively high concentration of rare earth elements(REE) and yttrium(REY),with a growing interest in exploitation as an alternative to land-based REY resources.On the bas...Ferromanganese nodules and crusts contain relatively high concentration of rare earth elements(REE) and yttrium(REY),with a growing interest in exploitation as an alternative to land-based REY resources.On the basis of comprehensive geochemical approach,the abundance and distribution of REY in the ferromanganese nodules from the South China Sea are analyzed.The results indicate that the REY contents in ferromanganese deposits show a clear geographic regularity.Total REY contents range from 69.1×10^-6 to 2 919.4×10^-6,with an average value of 1 459.5×10^-6.Especially,the enrichment rate of Ce content is high,accounting for almost 60% of the total REY.This REE enrichment is controlled mainly by the sorption of ferromanganese oxides and clay minerals in the nodules and crusts.Moreover,the total REY are higher in ferromanganese deposits of hydrogenous origin than of diagenetic origin.Finally,Light REE(LREE) and heavy REE(HREE) oxides of the ferromanganese deposits in the study area can be classified into four grades: non-enriched type,weakly enriched type,enriched type,and extremely enriched type.According to the classification criteria of rare earth resources,the Xisha and Zhongsha platform-central deep basin areas show a great potential for these rare earth metals.展开更多
In the present study, the analytical method for ^129iodine (^129I) in ferromanganese crusts is developed and ^129iodine/^127iodine (^129I/^127I) ratio in ferromanganese crusts is measured by the accelerator mass s...In the present study, the analytical method for ^129iodine (^129I) in ferromanganese crusts is developed and ^129iodine/^127iodine (^129I/^127I) ratio in ferromanganese crusts is measured by the accelerator mass spectrometry (AMS). The developed method is applied to analyze ^129I/^127I ratio in two ferromanganese crusts MP5D44 and CXD08-1 collected from the Mid-Pacific Ocean. The results show that ^129I/^127I ratio in MP5D44 and CXD08-1 crusts varies from 7×10^-14 to 1.27×10^-12, with the lowest value falling on the detection limit level of AMS reported by previous literatures. For the depth distribution of ^129I/^127I, it is found that both MP5D44 and CXD08-1 crusts have two growth generations, and the ^129I/^127I profiles in two generations all displayed an approximate exponential decay. According to the ^129I/^127I ratio, the generate age of bottom layer of MP5D44 and CXD08-1 was estimated to be 54.77 and 69.69 Ma, respectively.展开更多
We attempt to recover the paleocnvironments recorded in the accretion of a typical newtype hydrogenetic ferromanganese crust from the deep water areas of the East Philippine Sea. From detailed geochemical and U-series...We attempt to recover the paleocnvironments recorded in the accretion of a typical newtype hydrogenetic ferromanganese crust from the deep water areas of the East Philippine Sea. From detailed geochemical and U-series chronological studies, analysis of major and minor elements performed by X-ray fluorescence spectrometry (XRF) and inductively coupled plasma-mass spectrometer (ICPMS), three major accretion periods and corresponding paleocnvironments can be ascertained. The first period is a faster accretion period in the terminal Late Miocene to the Early Pliocene with looser structure and higher volcanic detritus content, corresponding to the active Antarctic bottom waters and depressed temperature from the intermediate Middle Miocene to the Early Pliocene. The second period is a pulse of pelagic clay deposition at the Early to Middle Pliocene, reflecting the shrinkage of the Antarctic bottom waters and the global temperature elevation of this period. The third period is a slower accretion period from the Middle Pliocene, which indicates the more violent activity of Antarctic bottom waters once again and more depressed temperature than the first period, facilitating the accretion of a more compact and pure ferromanganese zone. The paleoceanographic histories of these studied areas had not been made clear in previous research.展开更多
In the equatorial western Pacific, iron-manganese oxyhydroxide crusts(Fe-Mn crusts) and nodules form on basaltic seamounts and on the top of drowned carbonate platform guyots that have been swept free of pelagic sedim...In the equatorial western Pacific, iron-manganese oxyhydroxide crusts(Fe-Mn crusts) and nodules form on basaltic seamounts and on the top of drowned carbonate platform guyots that have been swept free of pelagic sediments. To date, the Fe-Mn crusts have been considered to be almost exclusively of abiotic origin. However, it has recently been suggested that these crusts may be a result of biomineralization. Although the Fe-Mn crust textures in the equatorial western Pacific are similar to those constructed by bacteria and algae, and biomarkers also document the existence of bacteria and algae dispersed within the Fe-Mn crusts, the precipitation, accumulation and distribution of elements, such as Fe, Mn, Ni and Co in Fe-Mn crusts are not controlled by microbial activity. Bacteria and algae are only physically incorporated into the crusts when dead plankton settle on the ocean floor and are trapped on the crust surface. Geochemical evidence suggests a hydrogenous origin of Fe-Mn crusts in the equatorial western Pacific, thus verifying a process for Fe-Mn crusts that involves the precipitation of colloidal phases from seawater followed by extensive scavenging of dissolved trace metals into the mineral phase during crust formation.展开更多
Ferromanganese crusts(Fe-Mn crusts)grow very slow and can be treated as condensed stratigraphic sections recording paleo-oceanographic environmental information and local key geological events during the mineralizatio...Ferromanganese crusts(Fe-Mn crusts)grow very slow and can be treated as condensed stratigraphic sections recording paleo-oceanographic environmental information and local key geological events during the mineralization process.Geochronology,textures,mineralogy,and geochemistry of a Fe-Mn crust sample from the CM6 Seamount of the Caroline Ridge in the Western Pacific Ocean were analyzed by means of electron probe microanalysis and X-ray diffraction.The Fe-Mn crust shows three layers in textural characteristics from bottom to top.The lower,middle,and upper layers presence mottled,botryoidal,and columnar textures,respectively.Ferruginous vernadite,Fe hydroxide,amorphous silicate minerals,calcite,quartz,and feldspar are the main minerals of the Fe-Mn crust.Using cobalt chronometry method,the cumulative growth time of the Fe-Mn crust was determined to be 11 Ma or 25 Ma,of which25 Ma is inconsistent with other lines of age constraint brought by dating of the substrate.The co-existence of abundant silicate minerals and bioclasts in the middle and lower layers of the Fe-Mn crust diluted the ferromanganese oxide deposits,thus affected the texture,minerals,and geochemical characteristics of the Fe-Mn crust.Variations in Mn Co,Ni,and other elements content and the burial of opal-A recorded the expansion of oxygen minimum zone(OMZ)in the upper layer of the Fe-Mn crust.In addition,the highreflectivity Fe-rich laminae might indicate the surrounding volcanic activity.The Fe-Mn crust sample was determined to be hydrogenic by electron probe micro-analyzer(EPM A).The findings help us understand the geochemical characteristics of the Fe-Mn crust in the Caroline Ridge Seamount in the Western Pacific and the variations of paleo-oceanographic environment clues borne by the Fe-Mn crusts.展开更多
The spout-fluidizing characteristics of high-carbon ferromanganese powders with different sizes and masses were studied via a plexiglass spout-fluidized bed with an inner diameter of 30 mm and a height of 1000 mm.The ...The spout-fluidizing characteristics of high-carbon ferromanganese powders with different sizes and masses were studied via a plexiglass spout-fluidized bed with an inner diameter of 30 mm and a height of 1000 mm.The relationships between bed voidage and such parameters as bed height,particle size,fluidizing air velocity,and air flow were obtained.Experimental results show that the powder material with high density can be fluidized in the spout-fluidized bed where the particle size is a key factor influencing the quality of fluidization.展开更多
A series of selective dissolution experunents were conducted on the hydrogeinc ferromanganese crusts collected near Line Island to study the geochemistry of Mn, Fe, Cu, Co, Ni and Ti. Despite of the fact that the very...A series of selective dissolution experunents were conducted on the hydrogeinc ferromanganese crusts collected near Line Island to study the geochemistry of Mn, Fe, Cu, Co, Ni and Ti. Despite of the fact that the very close intergrowth between amorphous ferric oxyhydroxides and 6-MnO2 exists in the hydrogenic ferromanganese crusts, there is no isomorphous substitution between iron and manganese. This is because the two elements in oxides have different crystal chemistry and geochemistry, such assertion bemg in agreement with the results of selective dissolution experiments. Transitional metal elements such as Cu, Co, Ni and Ti are enriched in different phases, i.e. Ni and Co are incorporated into 6-MnO2 while Cu and Ti are incorporated into ferric oxyhy- droxides. The distributions of the elements in amorphous ferric oxyhydroxides and δ-MnO2 are controlled by the existing states of the elements in the seawater and the crystal chemistry and geochemistry of these elements/inns in oxides.展开更多
This study presents new major,trace and REE data for thirty-five ferromanganese nodules recovered from areas representing three different sediment types(siliceous,red clay and their transition zone)in the Central Indi...This study presents new major,trace and REE data for thirty-five ferromanganese nodules recovered from areas representing three different sediment types(siliceous,red clay and their transition zone)in the Central Indian Ocean Basin(CIOB)to address their genetic aspects,classification,growth rate,nature of host sediments and influence of REE in the processes of nodule formation.The nodules from CIOB are mostly either hydrogenetic(metals coming from oxygenated bottom water)and diagenetic(metals coming from suboxic sediment pore water)or a combination of both,depending on the source of supply of metal.However,a number of biogeochemical processes mediate this supply of metals which again changes from time to time,making the nodule growth process highly dynamic.This study suggests that at the initial stage of nodule growth,host sediments do not play much role in controlling the growth processes for which REEs can enter both Mn and Fe oxyhydroxide phases equally.Thus,the bottom water signature is imprinted in these early formed nodules irrespective of their host sediment substrate but with gradual growth and burial in the sediment,the main mode of metal enrichment becomes diagenetic through sediment pore water.This tends to increase the concentration of Mn,Ni and Cu over other elements which are retained in the sediment fraction.Among the REEs,Ce concentration of the nodules shows significant positive anomaly due to variation in redox potential and hence its magnitude can be used to get an idea about the metal enrichment procedure and the genetic type of the nodules.However,based on host sediment only,not much difference is found in the magnitude of Ce anomaly in these nodules.On the other hand,discrimination diagram,based on HFSE and REY chemistry,indicates that most of these nodules are of diagenetic origin under oxic condition with a trend towards hydrogenetic field.Further,the genetic type of the ferromanganese nodules from the CIOB are more effectively differentiated by a combination of their major and trace element concentrations rather than solely based on their REE or HFSE chemistry or host sediment substrate.展开更多
Near-bottom observation data from the manned deep submersible Jiaolong with high-precision underwater positioning data from Weijia Guyot,Magellan Seamounts in the Western Pacific Ocean are reported.Three substrate typ...Near-bottom observation data from the manned deep submersible Jiaolong with high-precision underwater positioning data from Weijia Guyot,Magellan Seamounts in the Western Pacific Ocean are reported.Three substrate types were identified:Sediment,ferromanganese crust,and ferromanganese crust with a thin cover of sediment.The ferromanganese crusts show clear zoning and their continuity is usually disturbed by sediments on areas of the mountainside with relatively gentle slope gradients.The identified substrate spatial distributions correspond to acoustic backscatter intensity data,with regions of high intensity always including crust development and regions of low intensity always having sediment.Therefore,acoustic backscatter intensity surveying appears useful in the delineation and evaluation of crust resources,although further more work is needed to develop a practicable methodology.展开更多
Organic binder is used for briquetting manganese ore and coke fines to fabricate composite briquette with high strength and resistivity, thermal stability, good softening property and reducibility through simple proce...Organic binder is used for briquetting manganese ore and coke fines to fabricate composite briquette with high strength and resistivity, thermal stability, good softening property and reducibility through simple process ,which is advantageous to deep insertion of electrodes,improvement of permeability in burden layer and stabilization of operating process during smelting.Significant effects have been obtained from the industrial application in an 1800 kVA ferromanganese arc furnace charged with 50% of composite briquette: 20% electricity was saved and 9.6% more manganese was recovered.展开更多
This study has been performed to investigate the different parameters affecting on the production of high carbon ferromanganese in closed submerged arc furnace. The analysis of industrial data revealed that using mang...This study has been performed to investigate the different parameters affecting on the production of high carbon ferromanganese in closed submerged arc furnace. The analysis of industrial data revealed that using manganese ores with low Mn/Fe ratio necessitates higher amount of Mn-sinter in the charge. Using Mn-blend with higher Mn/Fe ratio reduces the coke consumption and this leads to reducing the electrodes consumption. The recovery of Mn ranges between 70 and 80 %. Much higher basic slag has slight effect on Mn- recovery. However, as slag basicity increases, the MnO- content of slag decreases. The manganese content of produced HCFeMn depends mainly on Mn/Fe ratio of Mn-blend. For obtaining HCFeMn alloy containing minimum 75%Mn, it is necessary to use Mn-blend with Mn/Fe ratio of higher than 6. A model for determination of the amount and composition of off-gases has been derived based on the chemical composition and material balance of the input raw materials and the produced alloy and slag. By using this model, the amount of off-gases was found to increase by increasing both Mn-blend and coke consumption.展开更多
This work aims at studying the reactivity of Egyptian manganese ores to be used in the production of ferromanganese alloys in submerged electric arc furnace. Ores with different manganese content (high-medium and low)...This work aims at studying the reactivity of Egyptian manganese ores to be used in the production of ferromanganese alloys in submerged electric arc furnace. Ores with different manganese content (high-medium and low) were selected and characterized by X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). The main mineralogical compositions in the three ores are pyrolusite (MnO2) and hematite (Fe2O3). Porosity of selected Mn ores was determined. The reactivity of the different ores was carried out through pre-reduction of the selected ores using thermobalance at 900°C and 1100°C and mixture of CO and CO2 gases. The reduction process was done until steady weight. The reduced ores were examined using XRD and SEM. The results showed that pyrolusite in high and medium ores are converted completely to MnO at 1100°C. However, the ore with low manganese content was converted to MnO and Mn3O4. Consequently, it is clear from the results that Mn ores with high and medium MnO2 content are more reactive than those with low MnO2. Therefore, high MnO2 content Mn ores are preferable to get good economic impact during the production of high carbon ferromanganese.展开更多
Ferromanganese(Fe-Mn)crusts are potential archives of the Cu and Zn isotope compositions of seawater through time.In this study,the Cu and Zn isotopes of the top surface of 28 Fe-Mn crusts and 2 Fe-Mn nodules were ana...Ferromanganese(Fe-Mn)crusts are potential archives of the Cu and Zn isotope compositions of seawater through time.In this study,the Cu and Zn isotopes of the top surface of 28 Fe-Mn crusts and 2 Fe-Mn nodules were analysed by MC-ICP-MS using combined sample-standard bracketing for mass bias correction.The Zn isotope compositions of the top surface of Fe-Mn crusts are in the range of 0.71‰to 1.08‰,with a mean δ^(66)Zn value of 0.94‰±0.21‰(2 SD,n=28).The δ^(65)Cu values of the top surface of Fe-Mn crusts range from 0.33‰to0.73‰,with a mean value of 0.58‰±0.20‰(2 SD,n=28).The Cu isotope compositions of Fe-Mn crusts are isotopically lighter than that of dissolved Cu in deep seawater(0.58‰vs.0.9‰).In contrast,the δ^(66)Zn values of Fe-Mn crusts appear to be isotopically heavy compared to deep seawater(0.94‰±0.21‰vs.0.51‰±0.14‰).The isotope fractionation between Fe-Mn crusts and seawater is attributed to equilibrium partitioning between the sorption to crusts and the organic-ligand-bound Cu and Zn in seawater.The Cu and Zn isotopes in the top surface of Fe-Mn crusts are not a direct reflection of the Cu and Zn isotopes,but a function of Cu and Zn isotopes in modern seawater.This study proposes that Fe-Mn crusts have the potential to be archives for paleoceanography through Cu and Zn isotope analysis.展开更多
基金Project(2013ZX0754-001)supported by China National Critical Project for Science and Technology on Water Pollution Prevention and Control
文摘Preparation of electronic grade manganese sulfate from ferromanganese slag, including grinding, leaching and purification, was studied. The impurities, such as Fe3+, Al3+, Ca2+, Mg2+, heavy metal ions and Na+, K+, were removed from leaching solution by neutralized-hydrolysis, fluorination precipitation, sulfuration precipitation and re-crystallization. Effects of pH of reaction, temperature and dosage of the different additives on removal rates of the metallic ions in leaching solution were investigated, and the suitable temperature, pH and the added amount of precipitating agent were obtained. The prepared manganese sulfate product, of which the mass fractions of Ca2+, Mg2+, Na+, K+ are all smaller than 0.005%, the mass fractions of Fe3+, Al3+ and heavy metal ions are smaller than 0.001%, and the mass fraction of Mn2+ is greater than 32%, can meet the demand of anode materials of lithium-ion batteries.
基金China International Seabed Area R & D Program under contract No.DYXM-115-01-1
文摘In 2001, the International Seabed Authority (ISBA) initiated the consideration relating to the Regulations for Prospecting and Exploration for Hydrothermal Polymetallic Sulphides and Cobalt-rich Ferromanganese Crusts in the Area at its 7th session. Since then, the consideration of the Regulations has been mainly focused on the size of areas to be allocated for exploration and exploitation of the crusts. This paper, based on the investigation data and the analysis of the distribution characteristics of the crusts, suggests a model for determining the size of areas for exploration and exploitation of the crusts, taking into account various factors such as production scale, crust thickness and grade, mineable area proportion, recovery efficiency, exploration venture, and so on. Through the modeling, the paper suggests that the exploration area (the area covered by each application for approval of a plan of work for exploration of cobalt-rich crusts) shall be 4 856 km2 and the exploitation area (the mine site area) shall be 1 214 km2, for 20 years of 1 million wet tonnes annual production.
基金This project is sponsored by the National Foundation of Natural Science of China
文摘The relation of Lp(the ratio P content in slag to P content in ferromanganese) and L,(the ratio Mn content in slag to Mn content in ferromanganese) with C content[C]in ferromanganese were tested by means of the equilibrium experiments of P and Mn between ferromanganese and BaO-BaF-MnO slag system.The results show that there exists in ferromanganese an optimum C content[C]* corresponding to maximum Land minimum L> which is closely related to oxygen potential in the system and the activity of P in the alloy.The control limits of oxygen potential in dephosphorization of ferromanganese are then analyzed.The theoretical limits and measures to improve ferromanganese dephosphorization with BaO-based slag are studied comprehensively based on previous research.
文摘Noble gas isotopic compositions of various layers in three-layered (outer, porous and compact layers) cobalt-rich ferromanganese crusts and their basaltic and phosphorite substrates from the western Pacific Ocean were analyzed by using a high vacuum gas mass spectrum. The analytical results show that the noble gases in the Co-rich crusts have derived mainly from the ambient seawater, extraterrestrial grains such as interplanetary dust particles (IDPs) and wind-borne continental dust grains, and locally formation water in the submarine sediments, but different noble gases have different sources. He in the crusts derives predominantly from the extraterrestrial grains, with a negligible amount of radiogenic He from the eolian dust grains. Ar is sourced mainly from the dissolved air in the seawater and insignificantly from radiogenic Ar in the eolian continental dust grains or the formation water. Xe and Ne derive mainly from the seawater, with minor amounts of extraterrestrial Xe and Ne in the IDPs. Compared with the porous and outer layers, the compact layer has a relatively high 4He content and lower 3He/4He ratios, suggesting that marine phosphatization might have greatly modified the noble gas isotopic compositions of the crusts. Besides, the 3He/4He values of the basaltic substrates of the cobalt-rich crusts are very low and their R/R. ratios are mostly 〈0.1 R., which are similar to that of phosphorite substrates (0.087 R.), but much lower than that of fresh submarine MORB (8.75±14 Ra) or seamount basalts (3-43 Ra), implying that the basaltic substrates have suffered strong water/rock interaction and reacted with radiogenic ^4He and P-rich upwelling marine currents during phosphatization. The trace elements released in the basalt/seawater interaction might favor the growth of cobalt-rich crusts. The relatively low ^3He/^4He values in the seamount basalts may be used as an important exploration criterion for the cobalt-rich ferromanganese crusts.
基金supported by the National Natural Science Foundation of China(Grant No.40373024)the China Association of Research for 0ceanic Mineral Resources(Grant No.DY105-01-04-6)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20050284043).
文摘Marine hydrogenous ferromanganese crust, an important metal resource in the future, has significant potential in various applications as a type of natural nano-structured material. By employing scanning electronic microscopy, nitrogen adsorption-desorption isotherm measurement, Xray fluorescence spectrometer and X-ray diffraction methods, the micro-structure, surface properties and chemical composition of several plate-like ferromanganese crusts sampled from the northwestern Pacific were investigated comprehensively. Although obvious differences were observed from different layers, the crust is a typical porous material with high specific surface area, unique pore structure and abundant transition elements. Furthermore, the performance of natural crust in desulfurization process was preliminarily tested in laboratory experiments. The suffur capacities of the crust are 13.1% and 18.1% at room temperature and 350 ℃, respectively. The crust can be used not only as a metal resource, but also as an environmental material.
文摘In the present paper, iodine (I), iron (Fe), manganese (Mn), cobalt (Co), phosphorus (P) and calcium (Ca) contents in three ferromanganese crusts from the Pacific Ocean are measured by spectrophotometric method and inductively coupled plasma atomic emission spectrometers (ICP-AES) to investigate the contents and distribution of iodine in ferromanganese crusts. The results show that iodine contents in three crusts vary between 27.1 and 836 mg/kg, with an average of 172 mg/kg, and the profile of iodine in the three crusts all exhibits a two-stage distribution zone: a young non-phosphatized zone and an old phosphatized zone that is rich in I, P and Ca. The iodine content ratios of old to young zone in MP5D44, CXD62-1 and CXD08-1 are 2.3, 3.4 and 13.7, respectively. The boundary depths of two-stage zone in MP5D44, CXD62-1 and CXD08-1 locate at 4.0 cm, 2.5 cm and 3.75 cm, respectively, and the time of iodine mutation in three crusts ranges from 17-37 Ma derived from 129I dating and Co empirical formula, which is consistent with the times of Cenozoic phosphatization events. The present study shows that the intensity of phosphatization is the main responsible for the distribution pattern of iodine in the crusts on the basis of the correlation analysis. Consequently, iodine is a sensitive indicator for phosphatization.
基金China Ocean Mineral Resources R&D Association COMRA Special Foundation under contract Nos DY125-15-R-03 and DY125-13-E-01the National Natural Science Foundation of China under contract No.41276173+1 种基金the Zhejiang Provincial Natural Science Foundation of China under contract No.LQ13D060002the Scientific Research Fund of the Second Institute of Oceanography,SOA under contract No.JT1305
文摘Cobalt-rich ferromanganese is an important seafloor mineral and is abundantly present in the seamount crusts. Such crusts form potential hotspots for biogeochemical activity and microbial diversity, yet our understanding of their microbial communities is lacking. In this study, a cultivation-independent approach was used to recover genomic information and derive ecological functions of the microbes in a sediment sample collected from the cobalt-rich ferromanganese crust of a seamount region in the central Pacific. A total of 78 distinct clones were obtained by fosmid library screening with a 16S rRNA based PCR method. Proteobacteria and MGI Thaumarch-aeota dominated the bacterial and archaeal 16S rRNA gene sequence results in the microbial community. Nine fosmid clones were sequenced and annotated. Numerous genes encoding proteins involved in metabolic functions and heavy metal resistance were identified, suggesting alternative metabolic pathways and stress responses that are essential for microbial survival in the cobalt-rich ferromanganese crust. In addition, genes that participate in the synthesis of organic acids and exoploymers were discovered. Reconstruction of the metabolic pathways revealed that the nitrogen cycle is an important biogeochemical process in the cobalt-rich ferromanganese crust. In addition, horizontal gene transfer (HGT) events have been observed, and most of them came from bacteria, with some occurring in archaea and plants. Clone W4-93a, belonging to MGI Thaumarch-aeota, contained a region of gene synteny. Comparative analyses suggested that a high frequency of HGT events as well as genomic divergence play important roles in the microbial adaption to the deep-sea environment.
基金The National Natural Science Foundation of China under contract Nos 41376057,41306047,41676056the Spanish project SUBVENT under contract No.CGL2012-39524-C02
文摘Ferromanganese nodules and crusts contain relatively high concentration of rare earth elements(REE) and yttrium(REY),with a growing interest in exploitation as an alternative to land-based REY resources.On the basis of comprehensive geochemical approach,the abundance and distribution of REY in the ferromanganese nodules from the South China Sea are analyzed.The results indicate that the REY contents in ferromanganese deposits show a clear geographic regularity.Total REY contents range from 69.1×10^-6 to 2 919.4×10^-6,with an average value of 1 459.5×10^-6.Especially,the enrichment rate of Ce content is high,accounting for almost 60% of the total REY.This REE enrichment is controlled mainly by the sorption of ferromanganese oxides and clay minerals in the nodules and crusts.Moreover,the total REY are higher in ferromanganese deposits of hydrogenous origin than of diagenetic origin.Finally,Light REE(LREE) and heavy REE(HREE) oxides of the ferromanganese deposits in the study area can be classified into four grades: non-enriched type,weakly enriched type,enriched type,and extremely enriched type.According to the classification criteria of rare earth resources,the Xisha and Zhongsha platform-central deep basin areas show a great potential for these rare earth metals.
基金The National Natural Science Foundation of China under contract No.41073044
文摘In the present study, the analytical method for ^129iodine (^129I) in ferromanganese crusts is developed and ^129iodine/^127iodine (^129I/^127I) ratio in ferromanganese crusts is measured by the accelerator mass spectrometry (AMS). The developed method is applied to analyze ^129I/^127I ratio in two ferromanganese crusts MP5D44 and CXD08-1 collected from the Mid-Pacific Ocean. The results show that ^129I/^127I ratio in MP5D44 and CXD08-1 crusts varies from 7×10^-14 to 1.27×10^-12, with the lowest value falling on the detection limit level of AMS reported by previous literatures. For the depth distribution of ^129I/^127I, it is found that both MP5D44 and CXD08-1 crusts have two growth generations, and the ^129I/^127I profiles in two generations all displayed an approximate exponential decay. According to the ^129I/^127I ratio, the generate age of bottom layer of MP5D44 and CXD08-1 was estimated to be 54.77 and 69.69 Ma, respectively.
基金This paperis supported bythe Pilot Project of the Knowledge InnovationProgramof Chinese Academy of Sciences (No . KZCX3-SW-223) theNational Natural Science Foundation of China ( Nos . 40506016 and40576032) .
文摘We attempt to recover the paleocnvironments recorded in the accretion of a typical newtype hydrogenetic ferromanganese crust from the deep water areas of the East Philippine Sea. From detailed geochemical and U-series chronological studies, analysis of major and minor elements performed by X-ray fluorescence spectrometry (XRF) and inductively coupled plasma-mass spectrometer (ICPMS), three major accretion periods and corresponding paleocnvironments can be ascertained. The first period is a faster accretion period in the terminal Late Miocene to the Early Pliocene with looser structure and higher volcanic detritus content, corresponding to the active Antarctic bottom waters and depressed temperature from the intermediate Middle Miocene to the Early Pliocene. The second period is a pulse of pelagic clay deposition at the Early to Middle Pliocene, reflecting the shrinkage of the Antarctic bottom waters and the global temperature elevation of this period. The third period is a slower accretion period from the Middle Pliocene, which indicates the more violent activity of Antarctic bottom waters once again and more depressed temperature than the first period, facilitating the accretion of a more compact and pure ferromanganese zone. The paleoceanographic histories of these studied areas had not been made clear in previous research.
基金supported by the National Natural Science Foundation of China (Grant No.41273060)
文摘In the equatorial western Pacific, iron-manganese oxyhydroxide crusts(Fe-Mn crusts) and nodules form on basaltic seamounts and on the top of drowned carbonate platform guyots that have been swept free of pelagic sediments. To date, the Fe-Mn crusts have been considered to be almost exclusively of abiotic origin. However, it has recently been suggested that these crusts may be a result of biomineralization. Although the Fe-Mn crust textures in the equatorial western Pacific are similar to those constructed by bacteria and algae, and biomarkers also document the existence of bacteria and algae dispersed within the Fe-Mn crusts, the precipitation, accumulation and distribution of elements, such as Fe, Mn, Ni and Co in Fe-Mn crusts are not controlled by microbial activity. Bacteria and algae are only physically incorporated into the crusts when dead plankton settle on the ocean floor and are trapped on the crust surface. Geochemical evidence suggests a hydrogenous origin of Fe-Mn crusts in the equatorial western Pacific, thus verifying a process for Fe-Mn crusts that involves the precipitation of colloidal phases from seawater followed by extensive scavenging of dissolved trace metals into the mineral phase during crust formation.
基金the Strategic Priority Research Program of theChinese Academy of Sciences(Nos.XDB42010203,XDA19060401,XDA23050503)the Science and Technology Basic ResourcesInvestigation Program of China(No.2017FY100802)。
文摘Ferromanganese crusts(Fe-Mn crusts)grow very slow and can be treated as condensed stratigraphic sections recording paleo-oceanographic environmental information and local key geological events during the mineralization process.Geochronology,textures,mineralogy,and geochemistry of a Fe-Mn crust sample from the CM6 Seamount of the Caroline Ridge in the Western Pacific Ocean were analyzed by means of electron probe microanalysis and X-ray diffraction.The Fe-Mn crust shows three layers in textural characteristics from bottom to top.The lower,middle,and upper layers presence mottled,botryoidal,and columnar textures,respectively.Ferruginous vernadite,Fe hydroxide,amorphous silicate minerals,calcite,quartz,and feldspar are the main minerals of the Fe-Mn crust.Using cobalt chronometry method,the cumulative growth time of the Fe-Mn crust was determined to be 11 Ma or 25 Ma,of which25 Ma is inconsistent with other lines of age constraint brought by dating of the substrate.The co-existence of abundant silicate minerals and bioclasts in the middle and lower layers of the Fe-Mn crust diluted the ferromanganese oxide deposits,thus affected the texture,minerals,and geochemical characteristics of the Fe-Mn crust.Variations in Mn Co,Ni,and other elements content and the burial of opal-A recorded the expansion of oxygen minimum zone(OMZ)in the upper layer of the Fe-Mn crust.In addition,the highreflectivity Fe-rich laminae might indicate the surrounding volcanic activity.The Fe-Mn crust sample was determined to be hydrogenic by electron probe micro-analyzer(EPM A).The findings help us understand the geochemical characteristics of the Fe-Mn crust in the Caroline Ridge Seamount in the Western Pacific and the variations of paleo-oceanographic environment clues borne by the Fe-Mn crusts.
基金sponsored by National Natural Science Foundation of China and Baosteel Group Corporation (No.50974149)
文摘The spout-fluidizing characteristics of high-carbon ferromanganese powders with different sizes and masses were studied via a plexiglass spout-fluidized bed with an inner diameter of 30 mm and a height of 1000 mm.The relationships between bed voidage and such parameters as bed height,particle size,fluidizing air velocity,and air flow were obtained.Experimental results show that the powder material with high density can be fluidized in the spout-fluidized bed where the particle size is a key factor influencing the quality of fluidization.
基金supported by China Ocean Mineral Resources Research and Development Association (COMRA) (DY105-05-01-05)China Ministry of Education (205089)China National Natural Science Foundation (40076015).
文摘A series of selective dissolution experunents were conducted on the hydrogeinc ferromanganese crusts collected near Line Island to study the geochemistry of Mn, Fe, Cu, Co, Ni and Ti. Despite of the fact that the very close intergrowth between amorphous ferric oxyhydroxides and 6-MnO2 exists in the hydrogenic ferromanganese crusts, there is no isomorphous substitution between iron and manganese. This is because the two elements in oxides have different crystal chemistry and geochemistry, such assertion bemg in agreement with the results of selective dissolution experiments. Transitional metal elements such as Cu, Co, Ni and Ti are enriched in different phases, i.e. Ni and Co are incorporated into 6-MnO2 while Cu and Ti are incorporated into ferric oxyhy- droxides. The distributions of the elements in amorphous ferric oxyhydroxides and δ-MnO2 are controlled by the existing states of the elements in the seawater and the crystal chemistry and geochemistry of these elements/inns in oxides.
基金the support of CSIR Senior Research Fellowship,Indiaa part of the“Polymetallic Nodule:Survey and Exploration”project(GAP 2175)supported by Ministry of Earth Sciences,Govt.of India.This is NIO's contribution No.6633。
文摘This study presents new major,trace and REE data for thirty-five ferromanganese nodules recovered from areas representing three different sediment types(siliceous,red clay and their transition zone)in the Central Indian Ocean Basin(CIOB)to address their genetic aspects,classification,growth rate,nature of host sediments and influence of REE in the processes of nodule formation.The nodules from CIOB are mostly either hydrogenetic(metals coming from oxygenated bottom water)and diagenetic(metals coming from suboxic sediment pore water)or a combination of both,depending on the source of supply of metal.However,a number of biogeochemical processes mediate this supply of metals which again changes from time to time,making the nodule growth process highly dynamic.This study suggests that at the initial stage of nodule growth,host sediments do not play much role in controlling the growth processes for which REEs can enter both Mn and Fe oxyhydroxide phases equally.Thus,the bottom water signature is imprinted in these early formed nodules irrespective of their host sediment substrate but with gradual growth and burial in the sediment,the main mode of metal enrichment becomes diagenetic through sediment pore water.This tends to increase the concentration of Mn,Ni and Cu over other elements which are retained in the sediment fraction.Among the REEs,Ce concentration of the nodules shows significant positive anomaly due to variation in redox potential and hence its magnitude can be used to get an idea about the metal enrichment procedure and the genetic type of the nodules.However,based on host sediment only,not much difference is found in the magnitude of Ce anomaly in these nodules.On the other hand,discrimination diagram,based on HFSE and REY chemistry,indicates that most of these nodules are of diagenetic origin under oxic condition with a trend towards hydrogenetic field.Further,the genetic type of the ferromanganese nodules from the CIOB are more effectively differentiated by a combination of their major and trace element concentrations rather than solely based on their REE or HFSE chemistry or host sediment substrate.
基金This studywas funded by the Resource and Environment COMRA Projects (DY135-C1-1-02,DY135-C1-1-01)the China Geological Survey(DD20191009).
文摘Near-bottom observation data from the manned deep submersible Jiaolong with high-precision underwater positioning data from Weijia Guyot,Magellan Seamounts in the Western Pacific Ocean are reported.Three substrate types were identified:Sediment,ferromanganese crust,and ferromanganese crust with a thin cover of sediment.The ferromanganese crusts show clear zoning and their continuity is usually disturbed by sediments on areas of the mountainside with relatively gentle slope gradients.The identified substrate spatial distributions correspond to acoustic backscatter intensity data,with regions of high intensity always including crust development and regions of low intensity always having sediment.Therefore,acoustic backscatter intensity surveying appears useful in the delineation and evaluation of crust resources,although further more work is needed to develop a practicable methodology.
文摘Organic binder is used for briquetting manganese ore and coke fines to fabricate composite briquette with high strength and resistivity, thermal stability, good softening property and reducibility through simple process ,which is advantageous to deep insertion of electrodes,improvement of permeability in burden layer and stabilization of operating process during smelting.Significant effects have been obtained from the industrial application in an 1800 kVA ferromanganese arc furnace charged with 50% of composite briquette: 20% electricity was saved and 9.6% more manganese was recovered.
文摘This study has been performed to investigate the different parameters affecting on the production of high carbon ferromanganese in closed submerged arc furnace. The analysis of industrial data revealed that using manganese ores with low Mn/Fe ratio necessitates higher amount of Mn-sinter in the charge. Using Mn-blend with higher Mn/Fe ratio reduces the coke consumption and this leads to reducing the electrodes consumption. The recovery of Mn ranges between 70 and 80 %. Much higher basic slag has slight effect on Mn- recovery. However, as slag basicity increases, the MnO- content of slag decreases. The manganese content of produced HCFeMn depends mainly on Mn/Fe ratio of Mn-blend. For obtaining HCFeMn alloy containing minimum 75%Mn, it is necessary to use Mn-blend with Mn/Fe ratio of higher than 6. A model for determination of the amount and composition of off-gases has been derived based on the chemical composition and material balance of the input raw materials and the produced alloy and slag. By using this model, the amount of off-gases was found to increase by increasing both Mn-blend and coke consumption.
文摘This work aims at studying the reactivity of Egyptian manganese ores to be used in the production of ferromanganese alloys in submerged electric arc furnace. Ores with different manganese content (high-medium and low) were selected and characterized by X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). The main mineralogical compositions in the three ores are pyrolusite (MnO2) and hematite (Fe2O3). Porosity of selected Mn ores was determined. The reactivity of the different ores was carried out through pre-reduction of the selected ores using thermobalance at 900°C and 1100°C and mixture of CO and CO2 gases. The reduction process was done until steady weight. The reduced ores were examined using XRD and SEM. The results showed that pyrolusite in high and medium ores are converted completely to MnO at 1100°C. However, the ore with low manganese content was converted to MnO and Mn3O4. Consequently, it is clear from the results that Mn ores with high and medium MnO2 content are more reactive than those with low MnO2. Therefore, high MnO2 content Mn ores are preferable to get good economic impact during the production of high carbon ferromanganese.
基金The Shandong Provincial Natural Science Foundation of China under contract No.ZR2014DP009the China Ocean Mineral Resource Research and Development Association Research Program under contract Nos DY135-N-1-03,DY135-C1-1-04 and DY135-R2-1-03the Fund of the Construction and Operation of Test and Technical Support System for Natural Resources Investigation and Evaluation。
文摘Ferromanganese(Fe-Mn)crusts are potential archives of the Cu and Zn isotope compositions of seawater through time.In this study,the Cu and Zn isotopes of the top surface of 28 Fe-Mn crusts and 2 Fe-Mn nodules were analysed by MC-ICP-MS using combined sample-standard bracketing for mass bias correction.The Zn isotope compositions of the top surface of Fe-Mn crusts are in the range of 0.71‰to 1.08‰,with a mean δ^(66)Zn value of 0.94‰±0.21‰(2 SD,n=28).The δ^(65)Cu values of the top surface of Fe-Mn crusts range from 0.33‰to0.73‰,with a mean value of 0.58‰±0.20‰(2 SD,n=28).The Cu isotope compositions of Fe-Mn crusts are isotopically lighter than that of dissolved Cu in deep seawater(0.58‰vs.0.9‰).In contrast,the δ^(66)Zn values of Fe-Mn crusts appear to be isotopically heavy compared to deep seawater(0.94‰±0.21‰vs.0.51‰±0.14‰).The isotope fractionation between Fe-Mn crusts and seawater is attributed to equilibrium partitioning between the sorption to crusts and the organic-ligand-bound Cu and Zn in seawater.The Cu and Zn isotopes in the top surface of Fe-Mn crusts are not a direct reflection of the Cu and Zn isotopes,but a function of Cu and Zn isotopes in modern seawater.This study proposes that Fe-Mn crusts have the potential to be archives for paleoceanography through Cu and Zn isotope analysis.