In this study,non-equiatomic Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) medium-entropy alloys(MEAs)with different carbon contents were prepared via mechanical ball-milling,cold pressing and vacuum sintering.The microstruc...In this study,non-equiatomic Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) medium-entropy alloys(MEAs)with different carbon contents were prepared via mechanical ball-milling,cold pressing and vacuum sintering.The microstructural evolution,mechanical properties and wear resistance of the MEAs were investigated.Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) exhibited a bodycentered cubic(bcc)structure withσphase precipitation.After adding 4 at%and 8 at%carbon,the phase composition of the alloys was transformed to bcc+MC+σand bcc+MC+M_(23)C_(6),respectively.The mechanical properties and wear resistance were observed to be significantly enhanced by the formation of carbides.Increasing the carbon content,the corresponding bending strength and hardness increased from 1520 to 3245 MPa and HRC 57.2 to HRC 61.4,respectively.Further,the dominant wear mechanism changed from the adhesion wear to the abrasion wear.Owing to the evenly distributed carbides and precipitated nanocarbides,Fe_(64.4)Co_(6.9)Cr_(6.9)Ni_(6.9)V_(6.9)C_(8) revealed an extremely low specific wear rate of 1.3×10^(−6) mm_(2)/(N·m)under a load of 10 N.展开更多
Microstructure and mechanical properties of non-equiatomic(CuNi)_(100-x)Co_(x)(x=15,20,25 and 30,at.%)medium-entropy alloys(MEAs)prepared by vacuum arc-melting were investigated.Results show that all the as-cast MEAs ...Microstructure and mechanical properties of non-equiatomic(CuNi)_(100-x)Co_(x)(x=15,20,25 and 30,at.%)medium-entropy alloys(MEAs)prepared by vacuum arc-melting were investigated.Results show that all the as-cast MEAs exhibit dual face-centered cubic(fcc)solid-solution phases with identical lattice constant,showing typical dendrite structure consisting of(Ni,Co)-rich phase in dendrites and Cu-rich phase in inter-dendrites.The positive enthalpy of mixing among Cu and Ni-Co elements is responsible for the segregation of Cu.With the increase of Co content,the volume fraction of(Ni,Co)-rich phase increases while the Cu-rich phase decreases,resulting in an increment of yield strength and a decrement of elongation for the(CuNi)_(100-x)Co_(x) MEAs.Nano-indentation test results show a great difference of microhardness between the two fcc phases of the MEAs.The measured microhardness value of the(Ni,Co)-rich phase is almost twofold as compared to that of the Cu-rich phase in all the(CuNi)_(100-x)Co_(x) MEAs.During the deformation of the MEAs,the Cu-rich phase bears the main plastic strain,whereas the(Ni,Co)-rich phase provides more pronounced strengthening.展开更多
A series of as-cast lightweight multicomponent alloys Al(86-x)Mg10Zn2Cu2Six(x=0,0.3,0.6,0.9,1.2 at.%)were prepared by a vacuum induction furnace with a steel die.With the addition of Si,the reticular white Al-Cu phase...A series of as-cast lightweight multicomponent alloys Al(86-x)Mg10Zn2Cu2Six(x=0,0.3,0.6,0.9,1.2 at.%)were prepared by a vacuum induction furnace with a steel die.With the addition of Si,the reticular white Al-Cu phase deposited were gradually replaced by the gray eutectic Mg-Si phase,while the compressive strength of the alloys increases first and then decreases slowly.It is particularly noteworthy that the compression plasticity also exhibits this trend.When the Si content is 0.9 at.%,the compressive strength reaches its maximum at 779.11 MPa and the compressive plasticity reaches 20.91%.The effect of the addition of Si on the serration behavior of alloy was also studied;we found that the addition of Si introduces a new MgSi phase,and with the change of Si is significantly affects the morphology of the precipitated phase,which affects the serration behavior of the alloys.The comprehensive mechanical properties of the alloy are optimal at the critical point where the serration behavior disappears.In this work,we have provided a method and a composition for the preparation of a low-cost,high-strength,lightweight medium-entropy alloys.展开更多
The assistance of alloying elements provides enormous opportunities for the discovery of high-performance face-centered cubic(FCC)medium-entropy alloys(MEAs).In this work,the influence of al-loying element Mo on the p...The assistance of alloying elements provides enormous opportunities for the discovery of high-performance face-centered cubic(FCC)medium-entropy alloys(MEAs).In this work,the influence of al-loying element Mo on the phase stability,stacking fault energy(SFE),deformation mechanisms,lattice distortion,and mechanical properties of(CoCrNi)100-x Mox(0≤x≤10)MEAs was synthetically explored with the first-principles calculations.It indicates that the FCC phase remains metastable at 0 K,and its stability degenerates with increasing Mo content.The monotonous decrease of SFE is revealed with the rise of Mo content,which promotes the activation of stacking faults,deformation twinning,or martensitic transformation.Raising Mo content also causes the aggravation of lattice distortion and thus triggers in-tense solid solution strengthening.Significantly,the essential criterion for the composition design of FCC(CoCrNi)100-x Mo MEAs with superior strength-ductility combination was established based on the syner-gistic effects between multiple deformation mechanisms and solid solution strengthening.According to the criterion,the optimal composition is predetermined as(CoCrNi)93 Mo7 MEA.The criterion is proved to be effective,and it can provide valuable inspiration for the development of alloying-element reinforced FCC multi-principal element alloys.展开更多
Cryogenic pre-deformation treatment has been widely used to effectively improve the comprehensive mechanical properties of steels and novel metals.However,the dislocation evolution and phase transformation induced by ...Cryogenic pre-deformation treatment has been widely used to effectively improve the comprehensive mechanical properties of steels and novel metals.However,the dislocation evolution and phase transformation induced by different degrees of deep cryogenic deformation are not yet fully elucidated.In this study,the effects of multiple cryogenic pre-treatments on the mechanical properties and deformation mechanisms of a paramagnetic Fe_(63.3)Mn_(14-)Si_(9.1)Cr_(9.8)C_(3.8)medium-entropy alloy(MEA)were investigated,leading to the discovery of a pretreated MEA that exhibits exceptional mechanical properties,including a fracture strength of 3.0 GPa,plastic strain of 26.1%and work-hardening index of 0.57.In addition,X-ray diffraction(XRD)and transmission electron microscopy(TEM)analyses revealed that multiple cryogenic pre-deformation treatments significantly increased the dislocation density of the MEA(from 9×10^(15)to 4×10^(16)m^(-2)after three pretreatments),along with a transition in the dislocation type from predominantly edge dislocations to mixed dislocations(including screw-and edge-type dislocations).Notably,this pretreated MEA retained its paramagnetic properties(μ_(r)<1.0200)even after fracture.Thermodynamic calculations showed that cryogenic pretreatment can significantly reduce the stacking fault energy of the MEA by a factor of approximately four(i.e.,from 9.7 to2.6 m J·m^(-2)),thereby activating the synergistic effects of transformation-induced plasticity,twinning-induced plasticity and dislocation strengthening mechanisms.These synergistic effects lead to simultaneous strength and ductility enhancement of the MEA.展开更多
Chemical short-range orders(CSROs),as the built-in sub-nanoscale entities in a high-/medium-entropy alloy(H/MEA),have aroused an ever-increasing interest.With multi-principal elements in an H/MEA to form a complex con...Chemical short-range orders(CSROs),as the built-in sub-nanoscale entities in a high-/medium-entropy alloy(H/MEA),have aroused an ever-increasing interest.With multi-principal elements in an H/MEA to form a complex concentrated solution,a variety of sub-systems of species exist to induce the metastable ordered compounds as candidates for ultimate CSROs.The issues remain pending on the origin of CSROs as to how to judge if CSRO will form in an H/MEA and particularly,what kind of CSROs would be stably produced if there were multiple possibilities.Here,the first-principles method,along with the proposed local formation energy calculation in allusion to the atomic-scale chemical heterogeneities,is used to predict the CSRO formation based on the mechanical stability,thermodynamic formation energy,and electronic characteristics.The simulations are detailed in an equiatomic ternary VCoNi MEA with three kinds of potential compounds,i.e.,L1_(1),L1_(2),and B2,in the face-centered cubic matrix.It turns out that L1_(1)is stable but hard to grow up so as to become the final CSRO.L1_(1)is further predicted as CSROs in CrCoNi,but unable to form in FeCoNi and CrMnFeCoNi alloys.These predictions are consistent with the experimental observations.Our findings shed light on understanding the formation of CSROs.This method is applicable to other H/MEAs to design and tailor CSROs by tuning chemical species/contents and thermal processing for high performance.展开更多
The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory....The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory.The results indicate that W-Ti alloys except W_(8)Ti_(8) are thermodynamically stable.The modulus and hardness of W-Ti alloys are smaller than those of pure tungsten and gradually decrease with increasing Ti concentration.However,their B/G ratios and Poisson's ratios exceed those of pure tungsten,suggesting that the introduction of Ti decreases the mechanical strength while enhancing the ductility of W-Ti alloys.The thermal expansion coefficients for W-Ti alloys all surpass those of pure tungsten,indicating that the introduction of titanium exacerbates the thermal expansion behavior of W-Ti alloys.Nevertheless,elevated pressure has the capacity to suppress the thermal expansion tendencies in titanium-doped tungsten alloys.This study offers theoretical insights for the design of nuclear materials by exploring the mechanical and thermodynamic properties of W-Ti alloys.展开更多
The local structure and thermophysical behavior of Mg-La liquid alloys were in-depth understood using deep potential molecular dynamic(DPMD) simulation driven via machine learning to promote the development of Mg-La a...The local structure and thermophysical behavior of Mg-La liquid alloys were in-depth understood using deep potential molecular dynamic(DPMD) simulation driven via machine learning to promote the development of Mg-La alloys. The robustness of the trained deep potential(DP) model was thoroughly evaluated through several aspects, including root-mean-square errors(RMSEs), energy and force data, and structural information comparison results;the results indicate the carefully trained DP model is reliable. The component and temperature dependence of the local structure in the Mg-La liquid alloy was analyzed. The effect of Mg content in the system on the first coordination shell of the atomic pairs is the same as that of temperature. The pre-peak demonstrated in the structure factor indicates the presence of a medium-range ordered structure in the Mg-La liquid alloy, which is particularly pronounced in the 80at% Mg system and disappears at elevated temperatures. The density, self-diffusion coefficient, and shear viscosity for the Mg-La liquid alloy were predicted via DPMD simulation, the evolution patterns with Mg content and temperature were subsequently discussed, and a database was established accordingly. Finally, the mixing enthalpy and elemental activity of the Mg-La liquid alloy at 1200 K were reliably evaluated,which provides new guidance for related studies.展开更多
In order to develop a generic framework capable of designing novel amorphous alloys with selected target properties,a predictor−corrector inverse design scheme(PCIDS)consisting of a predictor module and a corrector mo...In order to develop a generic framework capable of designing novel amorphous alloys with selected target properties,a predictor−corrector inverse design scheme(PCIDS)consisting of a predictor module and a corrector module was presented.A high-precision forward prediction model based on deep neural networks was developed to implement these two parts.Of utmost importance,domain knowledge-guided inverse design networks(DKIDNs)and regular inverse design networks(RIDNs)were also developed.The forward prediction model possesses a coefficient of determination(R^(2))of 0.990 for the shear modulus and 0.986 for the bulk modulus on the testing set.Furthermore,the DKIDNs model exhibits superior performance compared to the RIDNs model.It is finally demonstrated that PCIDS can efficiently predict amorphous alloy compositions with the required target properties.展开更多
The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion...The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion tests and microscopy techniques.Results show that the dissimilar joints exhibit strong stress corrosion cracking(SCC)resistance,maintaining substantial strength during slow strain rate tensile tests.Notably,the heat-affected zone(HAZ)and base metal(BM)on the 6005A+Sc side show superior performance in terms of inter-granular corrosion(IGC)and exfoliation corrosion(EXCO)compared to the corresponding zones on the 5083 side.The lower corrosion resistance of the 5083-BM and the 5083-HAZ can be attributed to the presence of numerous Al_(2)Mg_(3)phases and micro-scaled Al_(6)(Mn,Fe)intermetallics,mainly distributed along the rolling direction.Conversely,the enhanced corrosion resistance of the 6005A+Sc-BM and the 6005A+Sc-HAZ can be attributed to the discontinuously distributed grain boundary precipitates(β-Mg_(2)Si),the smaller grain size,and the reduced corrosive current density.展开更多
The interdiffusion coefficients in Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys were efficiently determined by combining diffusion couple experiments and high-throughput determination of ...The interdiffusion coefficients in Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys were efficiently determined by combining diffusion couple experiments and high-throughput determination of interdiffusion coefficients(HitDIC)software at 1273−1373 K.The results show that the addition of Al,Cu,and Mn to CoCrFeNi high-entropy alloys promotes the diffusion of Co,Cr,and Fe atoms.The comparison of tracer diffusion coefficients indicates that there is no sluggish diffusion in tracer diffusion on the thermodynamic temperature scale for the present Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys.The linear relationship between diffusion entropy and activation energy reveals that the diffusion process of atoms is unaffected by an increase in the number of components as long as the crystal structure remains unchanged.展开更多
The effect of Ti content on the microstructure and mechanical properties of as-cast light-weight Ti_(x)(AlVCr)_(100−x)medium entropy alloys was studied by compressive tests,X-ray diffraction,scanning electron microsco...The effect of Ti content on the microstructure and mechanical properties of as-cast light-weight Ti_(x)(AlVCr)_(100−x)medium entropy alloys was studied by compressive tests,X-ray diffraction,scanning electron microscopy and transmission electron microscopy.The results suggest that yield strength increases and then decreases with the increment of Ti content.The Ti_(60)(AlVCr)_(40)alloy has the best combination of high strength of 1204 MPa and uniform plastic strain of 70%,possessing a high specific yield strength of 255 MPa·cm^(3)/g.The enhancement of strength is mainly attributed to the synergic effects of solid-solution and coherent nano-precipitation strengthening,while dislocation motion such as dislocation pinning,entanglement and dislocation cells significantly increases the strain-hardening capacity.展开更多
This study aims to clarify the mechanisms for the grain boundary(GB)segregation through investigating the absorption of excess solute atoms at GBs in Al−Cu alloys by using the hybrid molecular dynamics/Monte Carlo sim...This study aims to clarify the mechanisms for the grain boundary(GB)segregation through investigating the absorption of excess solute atoms at GBs in Al−Cu alloys by using the hybrid molecular dynamics/Monte Carlo simulations.Two segregation mechanisms,substitutional and interstitial mechanisms,are observed.The intergranular defects,including dislocations,steps and vacancies,and the intervals in structural units are conductive to the prevalence of interstitial mechanism.And substitutional mechanism is favored by the highly ordered twin GBs.Furthermore,the two mechanisms affect the GB structure differently.It is quantified that interstitial mechanism is less destructive to GB structure than substitutional one,and often leads to a segregation level being up to about 6 times higher than the latter.These findings contribute to atomic scale insights into the microscopic mechanisms about how solute atoms are absorbed by GB structures,and clarify the correlation among intergranular structures,segregation mechanisms and kinetics.展开更多
To improve the wettability of hypereutectic Al−60Si alloy and enhance the mechanical properties of the joints,Al−60Si alloy was joined by ultrasonic soldering with Sn-9Zn solder,and a sound joint with in-situ Si parti...To improve the wettability of hypereutectic Al−60Si alloy and enhance the mechanical properties of the joints,Al−60Si alloy was joined by ultrasonic soldering with Sn-9Zn solder,and a sound joint with in-situ Si particle reinforcement was obtained.The oxide film of Al−60Si alloy at the interface was identified by transmission electron microscopy(TEM)analysis as amorphous Al_(2)O_(3).The oxide of Si particles in the base metal was also alumina.The oxide film of Al−60Si alloy was observed to be removed by ultrasonic vibration instead of holding treatment.Si particle-reinforced joints(35.7 vol.%)were obtained by increasing the ultrasonication time.The maximum shear strength peaked at 99.5 MPa for soldering at 330℃with an ultrasonic vibration time of 50 s.A model of forming of Si particles reinforced joint under the ultrasound was proposed,and ultrasonic vibration was considered to promote the dissolution of Al and migration of Si particles.展开更多
The unique long-range disordered atomic arrangement inherent in amorphous materials endows them with a range of superior properties,rendering them highly promising for applications in catalysis,medicine,and battery te...The unique long-range disordered atomic arrangement inherent in amorphous materials endows them with a range of superior properties,rendering them highly promising for applications in catalysis,medicine,and battery technology,among other fields.Since not all materials can be synthesized into an amorphous structure,the composition design of amorphous materials holds significant importance.Machine learning offers a valuable alternative to traditional“trial-anderror”methods by predicting properties through experimental data,thus providing efficient guidance in material design.In this study,we develop a machine learning workflow to predict the critical casting diameter,glass transition temperature,and Young's modulus for 45 ternary reported amorphous alloy systems.The predicted results have been organized into a database,enabling direct retrieval of predicted values based on compositional information.Furthermore,the applications of high glass forming ability region screening for specified system,multi-property target system screening and high glass forming ability region search through iteration are also demonstrated.By utilizing machine learning predictions,researchers can effectively narrow the experimental scope and expedite the exploration of compositions.展开更多
Microporosity formed in the solidification process of Al alloys is detrimental to the alloy properties.A two-dimensional cellular automaton(CA)model was developed to simulate the microstructure and microporosity forma...Microporosity formed in the solidification process of Al alloys is detrimental to the alloy properties.A two-dimensional cellular automaton(CA)model was developed to simulate the microstructure and microporosity formation in Al-Cu alloys,considering variations in Cu content and solidification rate.The results indicate that the Cu content primarily influences the growth of microporosity.To validate the model,directional solidification experiments were conducted on Al-Cu alloys with varing Cu contents and withdrawal rates.The experimental results of dendrites and microporosity characteristics agree well with the predictions from the developed model,thus confirming the validity of the model.The alloy’s liquidus temperature,dendrite morphology,and hydrogen saturation solubility arising from different Cu contents have significant effects on microporosity morphology.The withdrawal rate primarily affects the nucleation of hydrogen microporosity by altering cooling rates and dendritic growth rates,resulting in different microporosity characteristics.展开更多
To guarantee the computational accuracy of the finite element model,the strain-compensated Arrhenius-type model,modified Fields-Backofen(m-FB)model and modified Zerilli-Armstrong(m-ZA)model were established to predict...To guarantee the computational accuracy of the finite element model,the strain-compensated Arrhenius-type model,modified Fields-Backofen(m-FB)model and modified Zerilli-Armstrong(m-ZA)model were established to predict the hightemperature flow stress of as-cast low alloyed Al-0.5Cu,Al-1Si,and Al-1Si-0.5Cu.To determine the material constants of these three constitutive models,isothermal compression tests of the three aluminum alloys were carried out on a Gleeble-3800 thermal simulator.The prediction results of the constitutive model were compared with the experimental results to evaluate the prediction accuracy of the constitutive models,and to provide a basis for selecting the most suitable constitutive models(parameters)for the three alloys mentioned above.It is found that the strain-compensated Arrhenius model and m-ZA model can be regarded as the most suitable constitutive models for Al-0.5Cu and Al-1Si alloys,respectively,and these two constitutive models also can be applied to Al-1Si-0.5Cu alloy.However,the m-FB model can be applied to Al-0.5Cu,Al-1Si and Al-1Si-0.5Cu alloys only under high temperature and medium strain conditions.展开更多
Recently,high-and medium-entropy alloys(HEAs and MEAs) have been found to exhibit excellent cryogenic mechanical properties,but most of them contain high-priced Co element.Therefore,developing HEAs or MEAs with high s...Recently,high-and medium-entropy alloys(HEAs and MEAs) have been found to exhibit excellent cryogenic mechanical properties,but most of them contain high-priced Co element.Therefore,developing HEAs or MEAs with high strength and ductility and relatively low cost is urgent.In this work,novel Cofree Fex Mn(75-x) Ni(10)Cr(15)(x=50 and 55 at.%) MEAs were developed,which exhibit a good combination of low cost,high strength and ductility at cryogenic temperature.It was found that the Fe(50)Mn(25)Ni(10)Cr(15)MEA exhibits a combination of cryogenic tensile strength of^0.98 GPa and ductility of^83 %.The excellent cryogenic mechanical properties were attributed to joint of twinning-induced plasticity(TWIP) and transformation-induced plasticity(TRIP) effects.The present study sheds light on developing low cost MEAs with high perfo rmance for cryogenic-tempe rature applications.展开更多
High(or medium)-entropy alloys(H/MEAs)are complex concentrated solid solutions prone to develop the chemical short-range orders(CSROs),as an indispensable structural constituent to make H/MEAs essentially different fr...High(or medium)-entropy alloys(H/MEAs)are complex concentrated solid solutions prone to develop the chemical short-range orders(CSROs),as an indispensable structural constituent to make H/MEAs essentially different from the traditional alloys.The CSROs are predicted to play roles in dislocation behaviors and mechanical properties.So far,the image of CSROs is built up by the theoretical modeling and computational simulations in terms of the conventional concept,i.e.,the preference/avoidance of elemental species to satisfy the short-ranged ordering in the first and the next couple of nearest-neighbor atomic shells.In these simulated CSROs,however,the structural image is missing on the atomic scale,even though the lattice periodicity does not exist in the CSROs.Further,it is pending as to the issues if and what kind of CSRO may be formed in a specific H/MEA.All these are ascribed to the challenge of experimentally seeing the CSROs.Until recently,the breakthrough does not appear to convincingly identify the CSROs in the H/MEAs by using the state-of-the-art transmission electron microscope.To be specific,the electron diffractions provide solid evidence to doubtlessly ascertain CSROs.The structure motif of CSROs is then constructed,showing both the lattice structure and species ordering occupation,along with the stereoscopic topography of the CSRO.It is suggested that the CSROs,as the first landscape along the path of development of the local chemical ordering,offer one more route to substantially develop the ordered structure on the atomic scale in the H/MEAs,parallel to the existing grain-leveled microstructure.The findings of CSROs make a step forward to understand the CSROs-oriented relationship between the microstructure and mechanical properties.This review focuses on the recent progress mainly in the experimental aspects of the identification,structure motif,and mechanical stability in CSROs,along with the chemical medium-range orders as the growing CSROs。展开更多
A hybrid first-principles/Monte Carlo simulation is combined with experiments to study the structure and elastic properties of CoCrNi_x(x=1-0.5)alloys.The experimental X-ray diffraction patterns show that the structur...A hybrid first-principles/Monte Carlo simulation is combined with experiments to study the structure and elastic properties of CoCrNi_x(x=1-0.5)alloys.The experimental X-ray diffraction patterns show that the structures have changed from the single-phase face-centered cubic(FCC)structure at x=1-0.8 to the coexistence of FCC and the hexagonal close-packed structures at x=0.7-0.5,which is further confirmed by calculations on mixing energies.The elastic moduli by calculation are basically in agreement with experiments.Room-temperature tension shows that the six alloys have a certain plasticity,the strength and plasticity of the alloys have a linear decrease with the decrease in Ni contents,and the plasticity of the alloys drops from 84 to 23%.Furthermore,first-principles density function theory calculations were employed to reveal the electronic and magnetic structures of alloys.The electron density of states for all alloys is asymmetrical,which illustrates that the alloys are ferromagnetism.It is found that Cr atoms can suppress the ferromagnetism of alloys,since Cr atoms have both positive and negative magnetic moments in all alloys.展开更多
基金Project(2016YFB0700300)supported by the National Key Research and Development Program of China。
文摘In this study,non-equiatomic Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) medium-entropy alloys(MEAs)with different carbon contents were prepared via mechanical ball-milling,cold pressing and vacuum sintering.The microstructural evolution,mechanical properties and wear resistance of the MEAs were investigated.Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) exhibited a bodycentered cubic(bcc)structure withσphase precipitation.After adding 4 at%and 8 at%carbon,the phase composition of the alloys was transformed to bcc+MC+σand bcc+MC+M_(23)C_(6),respectively.The mechanical properties and wear resistance were observed to be significantly enhanced by the formation of carbides.Increasing the carbon content,the corresponding bending strength and hardness increased from 1520 to 3245 MPa and HRC 57.2 to HRC 61.4,respectively.Further,the dominant wear mechanism changed from the adhesion wear to the abrasion wear.Owing to the evenly distributed carbides and precipitated nanocarbides,Fe_(64.4)Co_(6.9)Cr_(6.9)Ni_(6.9)V_(6.9)C_(8) revealed an extremely low specific wear rate of 1.3×10^(−6) mm_(2)/(N·m)under a load of 10 N.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grant No.2018B090905002)the National Natural Science Foundation of China(Grant No.52103360)the Basic Research Foundation of Guangzhou City(Grant No.201804020071).
文摘Microstructure and mechanical properties of non-equiatomic(CuNi)_(100-x)Co_(x)(x=15,20,25 and 30,at.%)medium-entropy alloys(MEAs)prepared by vacuum arc-melting were investigated.Results show that all the as-cast MEAs exhibit dual face-centered cubic(fcc)solid-solution phases with identical lattice constant,showing typical dendrite structure consisting of(Ni,Co)-rich phase in dendrites and Cu-rich phase in inter-dendrites.The positive enthalpy of mixing among Cu and Ni-Co elements is responsible for the segregation of Cu.With the increase of Co content,the volume fraction of(Ni,Co)-rich phase increases while the Cu-rich phase decreases,resulting in an increment of yield strength and a decrement of elongation for the(CuNi)_(100-x)Co_(x) MEAs.Nano-indentation test results show a great difference of microhardness between the two fcc phases of the MEAs.The measured microhardness value of the(Ni,Co)-rich phase is almost twofold as compared to that of the Cu-rich phase in all the(CuNi)_(100-x)Co_(x) MEAs.During the deformation of the MEAs,the Cu-rich phase bears the main plastic strain,whereas the(Ni,Co)-rich phase provides more pronounced strengthening.
基金The authors would like to thank the National Science Foundation of China(NSFC,Grants 51671020)Dongguan Yi’an Technology Co.,Ltd.for the financial support.
文摘A series of as-cast lightweight multicomponent alloys Al(86-x)Mg10Zn2Cu2Six(x=0,0.3,0.6,0.9,1.2 at.%)were prepared by a vacuum induction furnace with a steel die.With the addition of Si,the reticular white Al-Cu phase deposited were gradually replaced by the gray eutectic Mg-Si phase,while the compressive strength of the alloys increases first and then decreases slowly.It is particularly noteworthy that the compression plasticity also exhibits this trend.When the Si content is 0.9 at.%,the compressive strength reaches its maximum at 779.11 MPa and the compressive plasticity reaches 20.91%.The effect of the addition of Si on the serration behavior of alloy was also studied;we found that the addition of Si introduces a new MgSi phase,and with the change of Si is significantly affects the morphology of the precipitated phase,which affects the serration behavior of the alloys.The comprehensive mechanical properties of the alloy are optimal at the critical point where the serration behavior disappears.In this work,we have provided a method and a composition for the preparation of a low-cost,high-strength,lightweight medium-entropy alloys.
基金the funding support for the work by the National Natural Science Foundation of China(NSFC)under Grant No.52071316the Youth Project of Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202300755)+1 种基金the Natural Science Foundation of Chongqing(Grant No.cstc2021jcyj-msxmX0697)the Project of Science Foundation in Chongqing Jiaotong University(Grant No.F1210023).
文摘The assistance of alloying elements provides enormous opportunities for the discovery of high-performance face-centered cubic(FCC)medium-entropy alloys(MEAs).In this work,the influence of al-loying element Mo on the phase stability,stacking fault energy(SFE),deformation mechanisms,lattice distortion,and mechanical properties of(CoCrNi)100-x Mox(0≤x≤10)MEAs was synthetically explored with the first-principles calculations.It indicates that the FCC phase remains metastable at 0 K,and its stability degenerates with increasing Mo content.The monotonous decrease of SFE is revealed with the rise of Mo content,which promotes the activation of stacking faults,deformation twinning,or martensitic transformation.Raising Mo content also causes the aggravation of lattice distortion and thus triggers in-tense solid solution strengthening.Significantly,the essential criterion for the composition design of FCC(CoCrNi)100-x Mo MEAs with superior strength-ductility combination was established based on the syner-gistic effects between multiple deformation mechanisms and solid solution strengthening.According to the criterion,the optimal composition is predetermined as(CoCrNi)93 Mo7 MEA.The criterion is proved to be effective,and it can provide valuable inspiration for the development of alloying-element reinforced FCC multi-principal element alloys.
基金supported by the National Natural Science Foundation of China(Nos.52061027 and 52130108)Zhejiang Provincial Natural Science Foundation of China(No.LY23E010002)+1 种基金the Science and Technology Program Project of Gansu Province(Nos.22YF7GA155 and 22ZD6GA008)Lanzhou Youth Science and Technology Talent Innovation Project(No.2023-QN-91)。
文摘Cryogenic pre-deformation treatment has been widely used to effectively improve the comprehensive mechanical properties of steels and novel metals.However,the dislocation evolution and phase transformation induced by different degrees of deep cryogenic deformation are not yet fully elucidated.In this study,the effects of multiple cryogenic pre-treatments on the mechanical properties and deformation mechanisms of a paramagnetic Fe_(63.3)Mn_(14-)Si_(9.1)Cr_(9.8)C_(3.8)medium-entropy alloy(MEA)were investigated,leading to the discovery of a pretreated MEA that exhibits exceptional mechanical properties,including a fracture strength of 3.0 GPa,plastic strain of 26.1%and work-hardening index of 0.57.In addition,X-ray diffraction(XRD)and transmission electron microscopy(TEM)analyses revealed that multiple cryogenic pre-deformation treatments significantly increased the dislocation density of the MEA(from 9×10^(15)to 4×10^(16)m^(-2)after three pretreatments),along with a transition in the dislocation type from predominantly edge dislocations to mixed dislocations(including screw-and edge-type dislocations).Notably,this pretreated MEA retained its paramagnetic properties(μ_(r)<1.0200)even after fracture.Thermodynamic calculations showed that cryogenic pretreatment can significantly reduce the stacking fault energy of the MEA by a factor of approximately four(i.e.,from 9.7 to2.6 m J·m^(-2)),thereby activating the synergistic effects of transformation-induced plasticity,twinning-induced plasticity and dislocation strengthening mechanisms.These synergistic effects lead to simultaneous strength and ductility enhancement of the MEA.
基金supported by the National Key Re-search and Development Program of the Ministry of Science and Technology of China(No.2019YFA0209902)the Natural Sci-ence Foundation of China(Nos.11988102 and 11972350).
文摘Chemical short-range orders(CSROs),as the built-in sub-nanoscale entities in a high-/medium-entropy alloy(H/MEA),have aroused an ever-increasing interest.With multi-principal elements in an H/MEA to form a complex concentrated solution,a variety of sub-systems of species exist to induce the metastable ordered compounds as candidates for ultimate CSROs.The issues remain pending on the origin of CSROs as to how to judge if CSRO will form in an H/MEA and particularly,what kind of CSROs would be stably produced if there were multiple possibilities.Here,the first-principles method,along with the proposed local formation energy calculation in allusion to the atomic-scale chemical heterogeneities,is used to predict the CSRO formation based on the mechanical stability,thermodynamic formation energy,and electronic characteristics.The simulations are detailed in an equiatomic ternary VCoNi MEA with three kinds of potential compounds,i.e.,L1_(1),L1_(2),and B2,in the face-centered cubic matrix.It turns out that L1_(1)is stable but hard to grow up so as to become the final CSRO.L1_(1)is further predicted as CSROs in CrCoNi,but unable to form in FeCoNi and CrMnFeCoNi alloys.These predictions are consistent with the experimental observations.Our findings shed light on understanding the formation of CSROs.This method is applicable to other H/MEAs to design and tailor CSROs by tuning chemical species/contents and thermal processing for high performance.
基金Funded by National Key R&D Program of China(No.2021YFB3802300)the National Natural Science Foundation of China(No.52171045)the Joint Fund(No.8091B022108)。
文摘The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory.The results indicate that W-Ti alloys except W_(8)Ti_(8) are thermodynamically stable.The modulus and hardness of W-Ti alloys are smaller than those of pure tungsten and gradually decrease with increasing Ti concentration.However,their B/G ratios and Poisson's ratios exceed those of pure tungsten,suggesting that the introduction of Ti decreases the mechanical strength while enhancing the ductility of W-Ti alloys.The thermal expansion coefficients for W-Ti alloys all surpass those of pure tungsten,indicating that the introduction of titanium exacerbates the thermal expansion behavior of W-Ti alloys.Nevertheless,elevated pressure has the capacity to suppress the thermal expansion tendencies in titanium-doped tungsten alloys.This study offers theoretical insights for the design of nuclear materials by exploring the mechanical and thermodynamic properties of W-Ti alloys.
基金financially supported by the National Key R &D Program of China (No.2022YFB3709300)。
文摘The local structure and thermophysical behavior of Mg-La liquid alloys were in-depth understood using deep potential molecular dynamic(DPMD) simulation driven via machine learning to promote the development of Mg-La alloys. The robustness of the trained deep potential(DP) model was thoroughly evaluated through several aspects, including root-mean-square errors(RMSEs), energy and force data, and structural information comparison results;the results indicate the carefully trained DP model is reliable. The component and temperature dependence of the local structure in the Mg-La liquid alloy was analyzed. The effect of Mg content in the system on the first coordination shell of the atomic pairs is the same as that of temperature. The pre-peak demonstrated in the structure factor indicates the presence of a medium-range ordered structure in the Mg-La liquid alloy, which is particularly pronounced in the 80at% Mg system and disappears at elevated temperatures. The density, self-diffusion coefficient, and shear viscosity for the Mg-La liquid alloy were predicted via DPMD simulation, the evolution patterns with Mg content and temperature were subsequently discussed, and a database was established accordingly. Finally, the mixing enthalpy and elemental activity of the Mg-La liquid alloy at 1200 K were reliably evaluated,which provides new guidance for related studies.
基金supported by the National Natural Science Foundation of China(No.52471184)the Science and Technology Major Project of Hunan Province,China(No.2019GK1012)+1 种基金the Postgraduate Scientific Research Innovation Project of Xiangtan University,China(No.XDCX2023Y174)the Postgraduate Scientific Research Innovation Project of Xiangtan University,China(No.XDCX2023Y173).
文摘In order to develop a generic framework capable of designing novel amorphous alloys with selected target properties,a predictor−corrector inverse design scheme(PCIDS)consisting of a predictor module and a corrector module was presented.A high-precision forward prediction model based on deep neural networks was developed to implement these two parts.Of utmost importance,domain knowledge-guided inverse design networks(DKIDNs)and regular inverse design networks(RIDNs)were also developed.The forward prediction model possesses a coefficient of determination(R^(2))of 0.990 for the shear modulus and 0.986 for the bulk modulus on the testing set.Furthermore,the DKIDNs model exhibits superior performance compared to the RIDNs model.It is finally demonstrated that PCIDS can efficiently predict amorphous alloy compositions with the required target properties.
基金financially supported by the Science and Technology Innovation Program of Hunan Province,China(No.2023RC3055)the Natural Science Foundation of Hunan Province,China(Nos.2023JJ30671,2020JJ4114)+5 种基金the Natural Science Foundation of Changsha City,China(No.Kq2208264)National Key Project of Research and Development Plan of China(Nos.2021YFC1910505,2021YFC1910504)the Young Core Teacher Foundation of Hunan Province,China(No.150220001)Key Research and Development Program of Guangdong Province,China(No.2020B010186002)the National Natural Science Foundation of China(No.51601229)the Key-Area Research and Development Program of Foshan City,China(No.2230032004640).
文摘The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion tests and microscopy techniques.Results show that the dissimilar joints exhibit strong stress corrosion cracking(SCC)resistance,maintaining substantial strength during slow strain rate tensile tests.Notably,the heat-affected zone(HAZ)and base metal(BM)on the 6005A+Sc side show superior performance in terms of inter-granular corrosion(IGC)and exfoliation corrosion(EXCO)compared to the corresponding zones on the 5083 side.The lower corrosion resistance of the 5083-BM and the 5083-HAZ can be attributed to the presence of numerous Al_(2)Mg_(3)phases and micro-scaled Al_(6)(Mn,Fe)intermetallics,mainly distributed along the rolling direction.Conversely,the enhanced corrosion resistance of the 6005A+Sc-BM and the 6005A+Sc-HAZ can be attributed to the discontinuously distributed grain boundary precipitates(β-Mg_(2)Si),the smaller grain size,and the reduced corrosive current density.
基金supported by the National Natural Science Foundation of China(No.52374372)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.23KJB430042)+3 种基金the Jiangsu Province Large Scientific Instruments Open Sharing Autonomous Research Filing Project,China(No.TC2023A037)the Yangzhou City−Yangzhou University Cooperation Foundation,China(No.YZ2022183)High-end Talent Support Program of Yangzhou University,China,Qinglan Project of Yangzhou University,ChinaLvyangjinfeng Talent program of Yangzhou,China.
文摘The interdiffusion coefficients in Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys were efficiently determined by combining diffusion couple experiments and high-throughput determination of interdiffusion coefficients(HitDIC)software at 1273−1373 K.The results show that the addition of Al,Cu,and Mn to CoCrFeNi high-entropy alloys promotes the diffusion of Co,Cr,and Fe atoms.The comparison of tracer diffusion coefficients indicates that there is no sluggish diffusion in tracer diffusion on the thermodynamic temperature scale for the present Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys.The linear relationship between diffusion entropy and activation energy reveals that the diffusion process of atoms is unaffected by an increase in the number of components as long as the crystal structure remains unchanged.
基金supported by the National Natural Science Foundation of China(Nos.52071176,12072331,51771090,51671103)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,China.
文摘The effect of Ti content on the microstructure and mechanical properties of as-cast light-weight Ti_(x)(AlVCr)_(100−x)medium entropy alloys was studied by compressive tests,X-ray diffraction,scanning electron microscopy and transmission electron microscopy.The results suggest that yield strength increases and then decreases with the increment of Ti content.The Ti_(60)(AlVCr)_(40)alloy has the best combination of high strength of 1204 MPa and uniform plastic strain of 70%,possessing a high specific yield strength of 255 MPa·cm^(3)/g.The enhancement of strength is mainly attributed to the synergic effects of solid-solution and coherent nano-precipitation strengthening,while dislocation motion such as dislocation pinning,entanglement and dislocation cells significantly increases the strain-hardening capacity.
基金supported by grants from the National Natural Science Foundation of China(Nos.52031017,51801237)the National Key Laboratory of Science and Technology on High-strength Structural Materials in Central South University,China(No.6142912200106).
文摘This study aims to clarify the mechanisms for the grain boundary(GB)segregation through investigating the absorption of excess solute atoms at GBs in Al−Cu alloys by using the hybrid molecular dynamics/Monte Carlo simulations.Two segregation mechanisms,substitutional and interstitial mechanisms,are observed.The intergranular defects,including dislocations,steps and vacancies,and the intervals in structural units are conductive to the prevalence of interstitial mechanism.And substitutional mechanism is favored by the highly ordered twin GBs.Furthermore,the two mechanisms affect the GB structure differently.It is quantified that interstitial mechanism is less destructive to GB structure than substitutional one,and often leads to a segregation level being up to about 6 times higher than the latter.These findings contribute to atomic scale insights into the microscopic mechanisms about how solute atoms are absorbed by GB structures,and clarify the correlation among intergranular structures,segregation mechanisms and kinetics.
基金financial support from the National Natural Science Foundation of China(Nos.52275385,U2167216)Sichuan Province Science and Technology Support Program,China(No.2022YFG0086).
文摘To improve the wettability of hypereutectic Al−60Si alloy and enhance the mechanical properties of the joints,Al−60Si alloy was joined by ultrasonic soldering with Sn-9Zn solder,and a sound joint with in-situ Si particle reinforcement was obtained.The oxide film of Al−60Si alloy at the interface was identified by transmission electron microscopy(TEM)analysis as amorphous Al_(2)O_(3).The oxide of Si particles in the base metal was also alumina.The oxide film of Al−60Si alloy was observed to be removed by ultrasonic vibration instead of holding treatment.Si particle-reinforced joints(35.7 vol.%)were obtained by increasing the ultrasonication time.The maximum shear strength peaked at 99.5 MPa for soldering at 330℃with an ultrasonic vibration time of 50 s.A model of forming of Si particles reinforced joint under the ultrasound was proposed,and ultrasonic vibration was considered to promote the dissolution of Al and migration of Si particles.
基金Project supported by funding from the National Natural Science Foundation of China(Grant Nos.52172258,52473227 and 52171150)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB0500200)。
文摘The unique long-range disordered atomic arrangement inherent in amorphous materials endows them with a range of superior properties,rendering them highly promising for applications in catalysis,medicine,and battery technology,among other fields.Since not all materials can be synthesized into an amorphous structure,the composition design of amorphous materials holds significant importance.Machine learning offers a valuable alternative to traditional“trial-anderror”methods by predicting properties through experimental data,thus providing efficient guidance in material design.In this study,we develop a machine learning workflow to predict the critical casting diameter,glass transition temperature,and Young's modulus for 45 ternary reported amorphous alloy systems.The predicted results have been organized into a database,enabling direct retrieval of predicted values based on compositional information.Furthermore,the applications of high glass forming ability region screening for specified system,multi-property target system screening and high glass forming ability region search through iteration are also demonstrated.By utilizing machine learning predictions,researchers can effectively narrow the experimental scope and expedite the exploration of compositions.
基金financially supported by the National Natural Science Foundation of China(Grant No.51875211)the Beijing Natural Science Foundation(Grant No.L223001)。
文摘Microporosity formed in the solidification process of Al alloys is detrimental to the alloy properties.A two-dimensional cellular automaton(CA)model was developed to simulate the microstructure and microporosity formation in Al-Cu alloys,considering variations in Cu content and solidification rate.The results indicate that the Cu content primarily influences the growth of microporosity.To validate the model,directional solidification experiments were conducted on Al-Cu alloys with varing Cu contents and withdrawal rates.The experimental results of dendrites and microporosity characteristics agree well with the predictions from the developed model,thus confirming the validity of the model.The alloy’s liquidus temperature,dendrite morphology,and hydrogen saturation solubility arising from different Cu contents have significant effects on microporosity morphology.The withdrawal rate primarily affects the nucleation of hydrogen microporosity by altering cooling rates and dendritic growth rates,resulting in different microporosity characteristics.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“Study on constitutive behavior of Al-xSi-yCu high purity aluminum alloy billets for target materials”(2020D01C023).
文摘To guarantee the computational accuracy of the finite element model,the strain-compensated Arrhenius-type model,modified Fields-Backofen(m-FB)model and modified Zerilli-Armstrong(m-ZA)model were established to predict the hightemperature flow stress of as-cast low alloyed Al-0.5Cu,Al-1Si,and Al-1Si-0.5Cu.To determine the material constants of these three constitutive models,isothermal compression tests of the three aluminum alloys were carried out on a Gleeble-3800 thermal simulator.The prediction results of the constitutive model were compared with the experimental results to evaluate the prediction accuracy of the constitutive models,and to provide a basis for selecting the most suitable constitutive models(parameters)for the three alloys mentioned above.It is found that the strain-compensated Arrhenius model and m-ZA model can be regarded as the most suitable constitutive models for Al-0.5Cu and Al-1Si alloys,respectively,and these two constitutive models also can be applied to Al-1Si-0.5Cu alloy.However,the m-FB model can be applied to Al-0.5Cu,Al-1Si and Al-1Si-0.5Cu alloys only under high temperature and medium strain conditions.
基金financially supported by the National Natural Science Foundation of China (Nos. U1832203, 11975202, U1704159 and 51701183)the Key Research & Development and Promotion of Special Project of Henan Province (Science & Technology) (No. 192102210006)。
文摘Recently,high-and medium-entropy alloys(HEAs and MEAs) have been found to exhibit excellent cryogenic mechanical properties,but most of them contain high-priced Co element.Therefore,developing HEAs or MEAs with high strength and ductility and relatively low cost is urgent.In this work,novel Cofree Fex Mn(75-x) Ni(10)Cr(15)(x=50 and 55 at.%) MEAs were developed,which exhibit a good combination of low cost,high strength and ductility at cryogenic temperature.It was found that the Fe(50)Mn(25)Ni(10)Cr(15)MEA exhibits a combination of cryogenic tensile strength of^0.98 GPa and ductility of^83 %.The excellent cryogenic mechanical properties were attributed to joint of twinning-induced plasticity(TWIP) and transformation-induced plasticity(TRIP) effects.The present study sheds light on developing low cost MEAs with high perfo rmance for cryogenic-tempe rature applications.
基金supported by the National Key Research and Development Program of the Ministry of Science and Technology of China(No.2019YFA0209902)the National Natural Science Foundation of China(Nos.11998102,11972350,and 11790293)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB22040503).
文摘High(or medium)-entropy alloys(H/MEAs)are complex concentrated solid solutions prone to develop the chemical short-range orders(CSROs),as an indispensable structural constituent to make H/MEAs essentially different from the traditional alloys.The CSROs are predicted to play roles in dislocation behaviors and mechanical properties.So far,the image of CSROs is built up by the theoretical modeling and computational simulations in terms of the conventional concept,i.e.,the preference/avoidance of elemental species to satisfy the short-ranged ordering in the first and the next couple of nearest-neighbor atomic shells.In these simulated CSROs,however,the structural image is missing on the atomic scale,even though the lattice periodicity does not exist in the CSROs.Further,it is pending as to the issues if and what kind of CSRO may be formed in a specific H/MEA.All these are ascribed to the challenge of experimentally seeing the CSROs.Until recently,the breakthrough does not appear to convincingly identify the CSROs in the H/MEAs by using the state-of-the-art transmission electron microscope.To be specific,the electron diffractions provide solid evidence to doubtlessly ascertain CSROs.The structure motif of CSROs is then constructed,showing both the lattice structure and species ordering occupation,along with the stereoscopic topography of the CSRO.It is suggested that the CSROs,as the first landscape along the path of development of the local chemical ordering,offer one more route to substantially develop the ordered structure on the atomic scale in the H/MEAs,parallel to the existing grain-leveled microstructure.The findings of CSROs make a step forward to understand the CSROs-oriented relationship between the microstructure and mechanical properties.This review focuses on the recent progress mainly in the experimental aspects of the identification,structure motif,and mechanical stability in CSROs,along with the chemical medium-range orders as the growing CSROs。
基金the National Key Laboratory for Remanufacturing(No.61420050204)Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi(2019)+1 种基金opening project of the State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology,No.KFJJ20-13 M)Hua Tian would like to acknowledge the National Natural Science Foundation of China(No.51901152)。
文摘A hybrid first-principles/Monte Carlo simulation is combined with experiments to study the structure and elastic properties of CoCrNi_x(x=1-0.5)alloys.The experimental X-ray diffraction patterns show that the structures have changed from the single-phase face-centered cubic(FCC)structure at x=1-0.8 to the coexistence of FCC and the hexagonal close-packed structures at x=0.7-0.5,which is further confirmed by calculations on mixing energies.The elastic moduli by calculation are basically in agreement with experiments.Room-temperature tension shows that the six alloys have a certain plasticity,the strength and plasticity of the alloys have a linear decrease with the decrease in Ni contents,and the plasticity of the alloys drops from 84 to 23%.Furthermore,first-principles density function theory calculations were employed to reveal the electronic and magnetic structures of alloys.The electron density of states for all alloys is asymmetrical,which illustrates that the alloys are ferromagnetism.It is found that Cr atoms can suppress the ferromagnetism of alloys,since Cr atoms have both positive and negative magnetic moments in all alloys.