期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Compression properties of cost-efficient porous expanded clay reinforced AA7075 syntactic foams fabricated by industrial-oriented die casting technology
1
作者 İsmail Cem Akgün Çağın Bolat Ali Gökşenli 《China Foundry》 SCIE EI CAS CSCD 2024年第1期60-70,共11页
In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollu... In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollution.At this point,aluminum syntactic foams(ASFs)are new-generation engineering composites and come into the upfront as a problem-solver.Owing to their features like low density,sufficient elongation,and perfect energy absorption ability,these advanced foams have been considerably seductive for many industrial sectors nowadays.In this study,an industrial-oriented automatic die casting technology was used for the first time to manufacture the combination of AA7075/porous expanded clay(PEC).Micro evaluations(optical and FESEM)reveal that there is a homogenous particle distribution in the foam samples,and inspections are compatible with the other ASF studies.Additionally,T6 aging heat treatment was operated on one half of the produced foams to explore the probable impact of aging on the compressive responses.Attained results show that PEC particles can be an alternative to expensive hollow spheres used in the previous works.Besides,a favorable relationship is ascertained between the aging treatment and mechanical properties such as compression strength and plateau strength. 展开更多
关键词 die casting porous materials metal matrix sytanctic foams expanded clay compressive deformation
下载PDF
Effect of chloride salt concentration on unconfined compression strength of cement-treated Lianyungang soft marine clay 被引量:4
2
作者 章定文 曹智国 +1 位作者 范礼彬 邓永锋 《Journal of Southeast University(English Edition)》 EI CAS 2013年第1期79-83,共5页
This study aims to quantify the influence of the amount of cement and chloride salt on the unconfined compression strength (UCS) of Lianyungang marine clay. The clays with various sodium chloride salt concentrations... This study aims to quantify the influence of the amount of cement and chloride salt on the unconfined compression strength (UCS) of Lianyungang marine clay. The clays with various sodium chloride salt concentrations were prepared artificially and stabilized by ordinary Portland cement with various contents. A series of UCS tests of cement stabilized clay specimen after 28 d curing were carried out. The results indicate that the increase of salt concentration results in the decrease in the UCS of cement-treated soil. The negative effect of salt concentration on the strength of cement stabilized clay directly relates to the cement content and salt concentration. The porosity-salt concentration/cement content ratio is a fundamental parameter for assessing the UCS of cement-treated salt-rich clay. An empirical prediction model of UCS is also proposed to take into account the effect of salt concentration. The findings of this study can be referenced for the stabilization improvement of chloride slat- rich soft clay. 展开更多
关键词 soft marine clay salt concentration CEMENTATION unconfined compression strength
下载PDF
Triaxial compression strength for artificial frozen clay with thermal gradient 被引量:2
3
作者 赵晓东 周国庆 陈国舟 《Journal of Central South University》 SCIE EI CAS 2013年第1期218-225,共8页
A series of triaxial compression tests for frozen clay were performed by KoDCGF (freezing with non-uniform temperature under loading after K0 consolidation) method and GFC (freezing with non-uniform temperature wit... A series of triaxial compression tests for frozen clay were performed by KoDCGF (freezing with non-uniform temperature under loading after K0 consolidation) method and GFC (freezing with non-uniform temperature without experiencing Ko consolidation) method at various confining pressures and thermal gradients. The experimental results indicate that the triaxial compression strength for frozen clay in KoDCGF test increases with the increase of confining pressure, but it decreases as the confining pressure increases further in GFC test. In other words, the compression strength for frozen clay with identical confining pressure decreases with the increase in thermal gradient both in KoDCGF test and GFC test. The strength of frozen clay in KoDCGF test is dependent of pore ice strength, soil particle strength and interaction between soil skeleton and pore ice. The decrease of water content and distance between soil particles leads to the decrease of pore size and the increase of contact area between particles in KoDCGF test, which further results in a higher compression strength than that in GFC test. The compression strength for frozen clay with thermal gradient can be descried by strength for frozen clay with a uniform temperature identical to the temperature at the height of specimen where the maximum tensile stress appears. 展开更多
关键词 artificial frozen clay triaxial compression test thermal gradient STRENGTH
下载PDF
Study and Comparison of Swelling and Compressibility Characteristics of Crumb Marl, Flaky Marl with Attapulgite and Sandy Clay from the Diamniadio Urban Pole at the Oedometer
4
作者 Khadim Faye Fatou Samb +1 位作者 Yves Berthaud Pape Sanou Faye 《Geomaterials》 2023年第3期61-70,共10页
In Senegal, the Diamniadio, Sebikhotane and Bargny sector contains clay soils that are problematic for construction. In order to have more information on the behavior of the clay soils of Diamniadio, free swelling tes... In Senegal, the Diamniadio, Sebikhotane and Bargny sector contains clay soils that are problematic for construction. In order to have more information on the behavior of the clay soils of Diamniadio, free swelling tests followed by load-discharge cycles were carried out according to standard NF P 94-090-1. These tests were carried out using an Oedometric device on the three samples from the study site (sandy clays with calcareous concretion, marls with crumbs and laminated marls with attapulgite) to apprehend their swelling aspects in saturated conditions. For the free swelling test, a determination of the different swelling phases will be carried out followed by a comparison of the rate of evolution of the phases for the three samples from the site. In the same vein, the compressibility characteristics of the samples will also be provided from load-unload Oedometric tests. Thereafter, we proceed to a comparison of the void index at the initial state of the samples after two charge-discharge cycles and the influence of the cycles on the reorganization of the internal structure of the samples. These studies will provide more information on the swelling behavior of Diamniadio soils in the presence of water. 展开更多
关键词 clay Swelling Expansive Soil Evolution of The Swelling compressibility Coefficient Charge-Discharge Cycle
下载PDF
Biopolymer stabilization of clayey soil
5
作者 Mahdieh Azimi Amin Soltani +2 位作者 Mehdi Mirzababaei Mark B.Jaksa Nanjappa Ashwath 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2801-2812,共12页
This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on... This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on the unconfined compressive strength(UCS)performance of a high plasticity clayey soil.Moreover,on identifying the optimum biopolymer-treatment scenarios,their performance was compared against conventional stabilization using hydrated lime.For a given curing time,the UCS for all biopolymers followed a riseefall trend with increasing biopolymer dosage,peaking at an optimum dosage and then subsequently decreasing,such that all biopolymer-stabilized samples mobilized higher UCS values compared to the unamended soil.The optimum dosage was found to be 1.5%for SA,XG and CS,while a notably lower dosage of 0.5%was deemed optimum for GG.Similarly,for a given biopolymer type and dosage,increasing the curing time from 7 d to 28 d further enhanced the UCS,with the achieved improvements being generally more pronounced for XG-and CS-treated cases.None of the investigated biopolymers was able to produce UCS improvements equivalent to those obtained by the 28-d soilelime samples;however,the optimum XG,GG and CS dosages,particularly after 28 d of curing,were easily able to replicate 7-d lime stabilization outcomes achieved with as high as twice the soil’s lime demand.Finally,the fundamental principles of clay chemistry,in conjunction with the soil mechanics framework,were employed to identify and discuss the clayebiopolymer stabilization mechanisms. 展开更多
关键词 Soil stabilization High plasticity clay Biopolymer dosage Hydrated lime Curing time Unconfined compressive strength(UCS)
下载PDF
Modeling Virgin Compression of Reconstituted Clay at Different Initial Water Contents
6
作者 卞夏 钱森 丁建文 《China Ocean Engineering》 SCIE EI CSCD 2015年第5期745-755,共11页
The observations on compressibility of reconstituted clays show that the compression line with a higher initial water content lies above the compression line with a lower initial water content for a given clay. Hence ... The observations on compressibility of reconstituted clays show that the compression line with a higher initial water content lies above the compression line with a lower initial water content for a given clay. Hence there exists additional void ratio due to initial water contents among virgin compression lines(VCLs) of reconstituted clays. In this paper, the difference in void ratio caused by different initial water contents is investigated based on the empirical equation proposed by Liu and Carter(2000) for describing the differential void ratio at the same stress between natural and reconstituted clays. The mechanism of compressibility of reconstituted clays, when the stress level is larger than the remolded yield stress, is also discussed. 展开更多
关键词 initial water content reconstituted clay compressibility
下载PDF
Improvement of Mechanical Qualities of Clay Material through Coconut Fiber Stabilization
7
作者 Boukaré Ouedraogo Abdoulaye Compaore +2 位作者 Moumouni Derra Kalifa Palm Dieudonné Joseph Bahiebo 《Materials Sciences and Applications》 2024年第7期201-212,共12页
The criticisms regularly formulated towards clay or soil, in general, are its weak mechanical qualities and low water quality. Therefore, it is necessary to find techniques to improve the properties of this material, ... The criticisms regularly formulated towards clay or soil, in general, are its weak mechanical qualities and low water quality. Therefore, it is necessary to find techniques to improve the properties of this material, which is widely used worldwide. Here, we propose stabilizing clay with coconut fiber as a solution to enhance its mechanical properties. To do this, we used an experimental method, first determining the geotechnical properties of the clay and then its mechanical properties. The geotechnical study using the Proctor Test revealed that the dry density of the clay is γb = 1.42 g/cm3, and its water content is W = 22.3%. By applying the rolling method, the Atterberg limits were determined: liquid limit Wl = 63.6, plastic limit Wp = 27.9, plasticity index Ip = 35.7, and consistency index Ic = 1.46. With 25 P = 35.7 1.3, according to the water classification, it falls into class A3ts. The mechanical part focused on compression and flexural strengths obtained using a PROETI hydraulic press. We obtained a flexural strength of 0.63 MPa for simple clay (BA);0.89 MPa for clay + 0.25% fiber (BAF1/4);1.68 MPa for clay + 0.5% fiber (BAF1/2);1.87 MPa for clay + 0.75% fiber (BAF3/4);and 3.91 MPa for clay + 1% fiber (BAF1). As for the compression strength, BA = 5.90 MPa, BAF1/4 = 6.395 MPa, BAF1/2 = 6.292 MPa, BAF3/4 = 6.065 MPa, and BAF1 = 5.423 MPa. The addition of fiber has thus improved the mechanical qualities of the simple clay. These stabilized bricks can be used for sustainable and bioclimatic construction, providing higher durability and good comfort. 展开更多
关键词 compression Strength Flexural Strength Coconut Fiber clay Geotechnical Properties
下载PDF
An investigation into the effects of lime on compressive and shear strength characteristics of fiber-reinforced clays 被引量:5
8
作者 Mahmood Reza Abdi Abbas Ghalandarzadeh Leila Shafiei Chafi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第4期885-898,共14页
To meet the ever-increasing construction demands around the world during recent years,reinforcement and stabilization methods have been widely used by geotechnical engineers to improve the performances and behavior of... To meet the ever-increasing construction demands around the world during recent years,reinforcement and stabilization methods have been widely used by geotechnical engineers to improve the performances and behavior of fine-grained soils.Although lime stabilization increases the compressive strength of soils,it reduces the soil ductility at the same time.Recent research shows that random fiber inclusion modifies the brittleness of soils.In the current research,the effects of lime and polypropylene(PP)fiber additions on such characteristics as compressive and shear strengths,failure strain,secant modulus of elasticity(E50)and shear strength parameters of mixtures were investigated.Kaolinite was treated with 1%,3% and 5% lime by dry weight of soil and reinforced with 0.1% monovalent PP fibers with the length of 6 mm.Samples were prepared at optimum conditions and cured at 35℃ for 1 d,7 d and 28 d at 90% relative humidity and subsequently subjected to uniaxial and triaxial compression tests(UCT and TCT)under cell pressures of 25 kPa,50 kPa and 100 kPa.Results showed that inclusion of random PP fibers to clay-lime mixtures increases both compressive and shear strengths as well as the ductility.Lime content and curing period were found to be the most influential factors.Scanning electron microscopy(SEM)analysis showed that lime addition and the formation of cementitious compounds bind soil particles and increase soil/fiber interactions at interface,leading to enhanced shear strength.The more ductile the stabilized and reinforced composition,the less the cracks in roads and waste landfill covers. 展开更多
关键词 KAOLINITE LIME Polypropylene(PP) Fiber-reinforced clay Triaxial compression test(TCT) Uniaxial compression test(UCT) Scanning electron microscopy(SEM)
下载PDF
Improving the Unconfined Compressive Strength of Red Clay by Combining Biopolymers with Fibers 被引量:2
9
作者 Zhiyu Weng Lina Wang +3 位作者 Qiang Liu Xuemin Pan Yonghao Xu Jing Li 《Journal of Renewable Materials》 SCIE EI 2021年第8期1503-1517,共15页
To explore an environmentally friendly improvement measure for red clay,the function and mechanism of xanthan gum biopolymer and polypropylene fibers on the strength properties of red clay were investigated by unconfi... To explore an environmentally friendly improvement measure for red clay,the function and mechanism of xanthan gum biopolymer and polypropylene fibers on the strength properties of red clay were investigated by unconfined compressive strength and scanning electron microscopy tests.The test results demonstrated that the contents and curing ages of xanthan gum had significant influences on the unconfined compressive strength of red clay.Compared with untreated soil,1.5%xanthan gum content was the optimal ratio in which the strength increment was between 41.52 kPa and 64.73 kPa.On the other hand,the strength of xanthan gum-treated red clay increased,whereas the ductility decreased with the increase in curing ages,indicating that the xanthan gum-treated red clay started to gradually consolidate after 3 days of curing and stiffness significantly improved between 7 and 28 days of curing.The results also showed that the synergistic consolidation effects of the xanthan gum–polypropylene fibers could not only effectively enhance the strength of red clay but also reduce the brittle failure phenomenon.The strengths of soil treated with 2.0%xanthan gum-polypropylene fibers were 1.9–2.41 and 1.12–1.47 times than that of red clay and 1.5%xanthan gum-treated clay,respectively.The results of study provide the related methods and experiences for the field of ecological soil treatment. 展开更多
关键词 BIOPOLYMER xanthan gum polypropylene fiber red clay MICRO-MECHANISM unconfined compressive strength
下载PDF
Effect of cryostructures on the uniaxial compressive strength of frozen clay 被引量:1
10
作者 Jian Wei Wang Hai Peng Li +2 位作者 Lei Song Shuai Dou Xin Lei Na 《Research in Cold and Arid Regions》 CSCD 2017年第3期267-272,共6页
Unconfined uniaxial compressive tests were performed to study the influence of cryostructure on frozen clay's behavior,such as strain-stress,compressive strength,and failure characteristics,at temperatures varying... Unconfined uniaxial compressive tests were performed to study the influence of cryostructure on frozen clay's behavior,such as strain-stress,compressive strength,and failure characteristics,at temperatures varying from-10 to-2°C and strain rates varying from 1.0×10-5to 1.0×10-3s-1.Artificial samples were prepared of three types:(1)integral structure,(2)laminar structure,and(3)reticular structure.The impact of temperature,strain rate,and cryostructure on the mechanical properties is discussed.In general,frozen clay with various cryostructures shows strain-softening behavior in the range of testing temperatures and strain rates.For frozen clay of different cryostructures,the ultimate compressive strength increases with increasing strain rate and decreasing temperature.Under the same testing conditions,the ultimate compressive strengths from high to low are in integral samples,laminar samples,and reticular samples.Failure strain of frozen clay generally increases with increasing temperature and does not indicate any correlation with cryostructure or strain rate.The failure mode of integral and reticular samples was shear failure,while laminar samples showed tensile failure. 展开更多
关键词 FROZEN clay cryostructure strain.stress relationship ULTIMATE compressIVE strength FAILURE STRAIN
下载PDF
Low secondary compressibility and shear strength of Shanghai Clay 被引量:1
11
作者 李青 吴宏伟 刘国彬 《Journal of Central South University》 SCIE EI CAS 2012年第8期2323-2332,共10页
In order to investigate the compressibility, particularly the secondary compression behaviour, soil structure and undrained shear strength of Shanghai Clay, a series of one-dimensional consolidation tests (some up to... In order to investigate the compressibility, particularly the secondary compression behaviour, soil structure and undrained shear strength of Shanghai Clay, a series of one-dimensional consolidation tests (some up to 70 d) and undrained triaxial tests on high-quality intact and reconstituted soil specimens were carried out. Shanghai Clay is a lightly overconsolidated soil (OCR=1.2-1.3) with true cohesion or bonding. Due to the influence of soil structures, the secondary compression index Ca varies significantly with consolidation stress and the maximum value of C~ occurs in the vicinity of preconsolidation stress. Measured coefficients of secondary compression generally fall in the range of 0.2%-0.8% based on which Shanghai Clay can be classified as a soil with low to medium secondary compressibility. The effect of soil structures on the compressibility of Shanghai Clay is found to reduce with an increase in depth. Soil structure has an important influence on initial soil stiffness, but does not appear to affect undrained shear strength significantly. Undrained shear strengths of intact Shanghai Clay from compression tests are approximately 20% higher than those from extension tests. 展开更多
关键词 Shanghai clay block sampling secondary compressibility soil structure undrained shear strength
下载PDF
Simulation of Silty Clay Compressibility Parameters Based on Improved BP Neural Network Using Bayesian Regularization 被引量:1
12
作者 CAI Run PENG Tao +2 位作者 WANG Qian HE Fanmin ZHAO Duoying 《Earthquake Research in China》 CSCD 2020年第3期378-393,共16页
Soil compressibility parameters are important indicators in the geotechnical field and are affected by various factors such as natural conditions and human interference.When the sample size is too large,conventional m... Soil compressibility parameters are important indicators in the geotechnical field and are affected by various factors such as natural conditions and human interference.When the sample size is too large,conventional methods require massive human and financial resources.In order to reasonably simulate the compressibility parameters of the sample,this paper firstly adopts the correlation analysis to select seven influencing factors.Each of the factors has a high correlation with compressibility parameters.Meanwhile,the proportion of the weights of the seven factors in the Bayesian neural network is analyzed based on Garson theory.Secondly,an output model of the compressibility parameters of BR-BP silty clay is established based on Bayesian regularized BP neural network.Finally,the model is used to simulate the measured compressibility parameters.The output results are compared with the measured values and the output results of the traditional LM-BP neural network.The results show that the model is more stable and has stronger nonlinear fitting ability.The output of the model is basically consistent with the actual value.Compared with the traditional LMBP neural network model,its data sensitivity is enhanced,and the accuracy of the output result is significantly improved,the average value of the relative error of the compression coefficient is reduced from 15.54%to 6.15%,and the average value of the relative error of the compression modulus is reduced from 6.07%to 4.62%.The results provide a new technical method for obtaining the compressibility parameters of silty clay in this area,showing good theoretical significance and practical value. 展开更多
关键词 Silty clay compressIBILITY Correlation analysis Bayesian regularization Neural networks
下载PDF
Evaluation of the Compressive Strength of Hybrid Clay Bricks
13
作者 O. Azeez O. Ogundare +2 位作者 T.E. Oshodin O.A. Olasupo B.A. Olunlade 《Journal of Minerals and Materials Characterization and Engineering》 2011年第7期609-615,共7页
This work has presented the evaluation of the compressive strength of hybrid clay bricks from interlocking brick making machine. The mixture of clay and cement at varying proportions was loaded into the mould compartm... This work has presented the evaluation of the compressive strength of hybrid clay bricks from interlocking brick making machine. The mixture of clay and cement at varying proportions was loaded into the mould compartment, mechanically rammed and hydraulically controlled. The raw clay was sourced from Ilesa and Akure in the south-western part of Nigeria. The results showed that when the cement content was 6%, the highest compressive load and energy at break were obtained in hybrid bricks from both Ilesa and Akure samples. However, the optimum service performance under compressive loading was attained at 6% cement in Ilesa hybrid bricks. Ilesa hybrid bricks possess better reliability and workability under loading than the Akure bricks. 展开更多
关键词 HYBRID BRICKS compressIVE strength clay cement INTERLOCKING machine.
下载PDF
Effects of mineralogical composition on uniaxial compressive strengths of sedimentary rocks
14
作者 Zhen-Liang Chen Huai-Zhong Shi +5 位作者 Chao Xiong Wen-Hao He Hai-Zhu Wang Bin Wang Nikita Dubinya Kai-Qi Ge 《Petroleum Science》 SCIE EI CSCD 2023年第5期3062-3073,共12页
Figuring out rock strength plays essential roles in the sub ground mining activities,such as oil and gas well drilling and hydraulic fracturing,coal mining,tunneling,and other civil engineering scenarios.To help under... Figuring out rock strength plays essential roles in the sub ground mining activities,such as oil and gas well drilling and hydraulic fracturing,coal mining,tunneling,and other civil engineering scenarios.To help understand the effects of the mineralogical composition on evaluating the rock strength,this research tries to establish indirect prediction models of rock strength by specific input mineral contents for common sedimentary rocks.Using rock samples collected from the outcrops in the Sichuan Basin,uniaxial compression tests have been conducted to sandstone,carbonate,and shale cores.Combining with statistical analysis,the experimental data prove it true that the mineralogical composition can be utilized to predict the rock strength under specific conditions but the effects of mineralogical composition on the rock strength highly depend on the rock lithologies.According to the statistical analysis results,the predicted values of rock strengths by the mineral contents can get high accuracies in sandstone and carbonate rocks while no evidences can be found in shale rocks.The best indicator for predicting rock strength should be the quartz content for the sandstone rocks and the dolomite content for the carbonate rocks.Especially,to improve the evaluation accuracy,the rock strengths of sandstones can be obtained by substituting the mineral contents of quartz and clays,and those of carbonates can be calculated by the mineral contents of dolomite and calcite.Noticeably,the research data point out a significant contrast of quartz content in evaluating the rock strength of the sandstone rocks and the carbonate rocks.Increasing quartz content helps increase the sandstone strength but decrease the carbonate strength.As for shale rocks,no relationship exists between the rock strength and the mineralogical composition(e.g.,the clay fractions).To provide more evidences,detailed discussion also provides the readers more glances into the framework of the rock matrix,which can be further studied in the future.These findings can help understand the effects of mineralogical composition on the rock strengths,explain the contrasts in the rock strength of the responses to the same mineral content(e.g.,the quartz content),and provide another indirect method for evaluating the rock strength of common sedimentary rocks. 展开更多
关键词 Uniaxial compressive strength Quartz content clay SANDSTONE CARBONATE SHALE
下载PDF
Relation between Compressive Strength of Baked Clay Cubes and Cylinders
15
作者 Nawab Ali Lakho Muhammad Auchar Zardari 《Engineering(科研)》 2016年第8期509-514,共6页
Reinforced Baked Clay (RBC) seems to be potential alternative of Reinforced Cement Concrete (RCC) for construction of low cost houses. In order to utilize RBC as a construction material for buildings, it is necessary ... Reinforced Baked Clay (RBC) seems to be potential alternative of Reinforced Cement Concrete (RCC) for construction of low cost houses. In order to utilize RBC as a construction material for buildings, it is necessary to understand compression behaviour of baked clay. In this paper, relation between cube crushing strength and cylinder strength of baked clay is presented. For this purpose, clay beams were cast in a mould and compacted at a pressure of 6 MPa. The clay beams were dried and fired in a kiln at a temperature of 900?C. Cubes of 150 mm size were sawed from a baked clay beam. Cylinders of 150 mm diameter and 300 mm height were cut, from another baked clay beam, using core cutter machine. Both the cubes and cylinders were tested for compressive strength in Universal Testing Machine. The results showed that the cube crushing strength of baked clay was 25 MPa and the ratio of the compressive strength of the cylinders and the cubes was found to be 0.6. Suggestions for improvement of compressive strength of baked clay cylinders are also discussed. 展开更多
关键词 Baked clay compressive Strength CUBES Cylinders Low Cost Houses
下载PDF
Comparison of Compressive and Tensile Strength of Baked Clay with Those of Normal Concrete
16
作者 Nawab Ali Lakho Muhammad Auchar Zardari 《Engineering(科研)》 2016年第6期301-307,共7页
Due to high cost of aggregates, cement and steel in plain regions of Pakistan, low income people are unable to get their houses constructed using Reinforced Cement Concrete (RCC). In this study, potential of baked cla... Due to high cost of aggregates, cement and steel in plain regions of Pakistan, low income people are unable to get their houses constructed using Reinforced Cement Concrete (RCC). In this study, potential of baked clay as an economical material of building construction is investigated in order to replace normal concrete. For this purpose, compressive strength and tensile strength of baked clay fired at 1000℃ were determined. The results show that the compressive strength and tensile strength of baked clay are about 65%, and 80% more than those of corresponding values of normal concrete, respectively. This implies that by utilizing reinforced baked clay instead of RCC, saving of cement aggregates and reinforcing steel could be achieved. 展开更多
关键词 Baked clay Tensile Strength compressive Strength Modulus of Rupture Normal Concrete COMPACTION
下载PDF
Experimental and Numerical Study of Mechanical Behaviour of Fired Clay Bricks after Exposure to High Temperatures
17
作者 Jean Calvin Bidoung Léon Arnaud Mpoung +1 位作者 Jean Aimé Mbey Jean Raymond Lucien Meva’a 《Journal of Minerals and Materials Characterization and Engineering》 2023年第5期143-160,共19页
This paper reports the modeling of residual compressive strength of fired clay bricks submitted to elevated temperature. Five formulations were used and the explored temperatures were 95˚C, 200˚C, 550˚C, 700˚C and 950... This paper reports the modeling of residual compressive strength of fired clay bricks submitted to elevated temperature. Five formulations were used and the explored temperatures were 95˚C, 200˚C, 550˚C, 700˚C and 950˚C. The stress–strain relationships and the mechanical properties (including Young’s modulus and compressive strength) were assessed using a uniaxial compressive strength machine. A proposed model equation was established and found satisfying. The elastic modulus was evaluated and tested with one existing model together with two proposed models. The proposed model was both satisfying and even more precise than the existing one. The overall results show that the effect of temperature on the mechanical properties of clays can be accurately described through the definition of thermal damage using elastic modulus. 展开更多
关键词 clay Bricks Modeling Stress-Strain Equations compressive Strength Young’s Modulus
下载PDF
Laboratory study on geotechnical characteristics of marine coral clay 被引量:3
18
作者 JIANG Chun-yong DING Xuan-ming +2 位作者 CHEN Xin-sheng FANG Hua-qiang ZHANG Yu 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期572-581,共10页
The hydraulic reclamation coral clay is a new type of clay,formed during the sorting process of coral island reef reclamation.The foundation of the hydraulic reclamation coral reef consists of coral sand,silt,and clay... The hydraulic reclamation coral clay is a new type of clay,formed during the sorting process of coral island reef reclamation.The foundation of the hydraulic reclamation coral reef consists of coral sand,silt,and clay.The part of the particles with particle size less than 0.075 mm contain more than 50%forms clay.As a new type of clay,the geotechnical properties were rarely reported in previous studies.In this paper,the physical and mechanical properties,microstructure and mineral composition were comprehensively researched by a series of laboratory tests.The results show that coral clay is a low liquid limit clay with high pore ratio and high saturation.From the aspect of mineral compositions,the coral clay studied consists of calcite and aragonite,while the chemical composition of it is calcium carbonate.The void ratio has a significant effect on the compressive properties of coral clay.With the increase of the void ratio,the compression coefficient a_(1-2) and compression index C_(c) gradually increase,and the compression modulus Es gradually decreases.The undrained stress−strain curve of coral clay shows a strain-softening behavior,and the peak strength and residual strength are positively linear correlated with confining pressure. 展开更多
关键词 coral clay X-RAY microstructure one-dimensional compression triaxial compression
下载PDF
Mechanical behavior of sandy facies of Opalinus Clay under different loadconditions 被引量:2
19
作者 Chun-Liang Zhang Ben Laurich 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第2期223-241,共19页
The mechanical behavior of sandy facies of Opalinus Clay at the Mont Terri underground rock laboratory(URL)in Switzerland was investigated with drained and undrained triaxial compression and extension,cyclic compressi... The mechanical behavior of sandy facies of Opalinus Clay at the Mont Terri underground rock laboratory(URL)in Switzerland was investigated with drained and undrained triaxial compression and extension,cyclic compression,and creep tests.Samples were taken from boreholes drilled parallel to bedding.Most of the samples were reconditioned to minimize sampling effects of desaturation and micro-cracking.The compression was accomplished by increasing axial stress at constant radial stress.The extension was carried out by increasing radial stress at constant axial stress.Moreover,extension was also achieved by simultaneously increasing radial stress and decreasing axial stress under constant mean stress.The test results showed elastoplastic stress-strain behavior with volumetric compaction until onset of dilatancy at high deviatoric stresses above 80%-90%of the peak failure strength.The strength is dependent upon load path and mean stress.The strength under triaxial compression is higher than that under extension.The respective strength increases with increasing mean stress.Desaturation enhances the stiffness and strength of the claystone.The deformation and strength of the elaystone are time-dependent.Under constant deviatoric stress,the claystone crept continuously with time,which can be characterized by a transient phase and a following stationary phase,and even a tertiary phase at high deviatoric stresses to rupture. 展开更多
关键词 clay ROCK compression Extension CREEP STIFFNESS
下载PDF
Use of recycled gypsum in the cement-based stabilization of very soft clays and its micro-mechanism 被引量:3
20
作者 Jun Wu Li Liu +3 位作者 Yongfeng Deng Guoping Zhang Annan Zhou Henglin Xiao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期909-921,共13页
This paper presents an experimental study and micro-mechanism discussion on gypsum role in the mechanical improvements of cement-based stabilized clay(CBSC).A soft marine clay at two initial water contents(i.e.50%and ... This paper presents an experimental study and micro-mechanism discussion on gypsum role in the mechanical improvements of cement-based stabilized clay(CBSC).A soft marine clay at two initial water contents(i.e.50%and 70%)was treated by reconstituted cementitious binders with varying gypsum to clinker(G/C)ratios and added metakaolin to facilitate the formation of ettringite,followed by the measurements of final water contents,dry densities and strengths in accordance with ASTM standards as well as microstructure by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).Results reveal that the gypsum fraction has a significant influence on the index and mechanical properties of the CBSC,and there exists a threshold of the G/C ratio,which is 10%and 15%for clays with 50%and 70%initial water contents,respectively.Beyond which adding excessive gypsum cannot improve the strength further,eliminating the beneficial role.At these thresholds of the G/C ratio,the unconfined compressive strength(UCS)values for clays with 50%and 70%initial water contents are 1.74 MPa and 1.53 MPa at 60 d of curing,respectively.Microstructure characterization shows that,besides the common cementation-induced strengthening,newly formed ettringite also acts as significant pore infills,and the associated remarkable volumetric expansion is responsible,and may be the primary factor,for the beneficial strength gain due to the added gypsum.Moreover,pore-filling ettringite also leads to the conversion of relatively large inter-aggregate to smaller intra-aggregate pores,thereby causing a more homogeneous matrix or solid skeleton with higher strength.Overall,added gypsum plays a vital beneficial role in the strength development of the CBSC,especially for very soft clays. 展开更多
关键词 Cement-based stabilized clay(CBSC) Cement clinker GYPSUM ETTRINGITE Unconfined compressive strength(UCS) MICRO-MECHANISM
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部