The Lower Cambrian shale gas in the western Hubei area,South China has a great resource prospect,but the gas-in-place(GIP)content in different sedimentary facies varies widely,and the relevant mechanism has been not w...The Lower Cambrian shale gas in the western Hubei area,South China has a great resource prospect,but the gas-in-place(GIP)content in different sedimentary facies varies widely,and the relevant mechanism has been not well understood.In the present study,two sets of the Lower Cambrian shale samples from the Wells YD4 and YD5 in the western Hubei area,representing the deep-water shelf facies and shallowwater platform facies,respectively,were investigated on the differences of pore types,pore structure and methane adsorption capacity between them,and the main controlling factor and mechanism of their methane adsorption capacities and GIP contents were discussed.The results show that the organic matter(OM)pores in the YD4 shale samples are dominant,while the inorganic mineral(IM)pores in the YD5 shale samples are primary,with underdeveloped OM pores.The pore specific surface area(SSA)and pore volume(PV)of the YD4 shale samples are mainly from micropores and mesopores,respectively,while those of the YD5 shale samples are mainly from micropores and macropores,respectively.The methane adsorption capacity of the YD4 shale samples is significantly higher than that of the YD5 shale samples,with a maximum absolute adsorption capacity of 3.13 cm^(3)/g and 1.31 cm^(3)/g in average,respectively.Compared with the shallow-water platform shale,the deep-water shelf shale has a higher TOC content,a better kerogen type and more developed OM pores,which is the main mechanism for its higher adsorption capacity.The GIP content models based on two samples with a similar TOC content selected respectively from the Wells YD4 and YD5 further indicate that the GIP content of the deep-water shelf shale is mainly 34 m^(3)/t within a depth range of 1000—4000 m,with shale gas exploration and development potential,while the shallow-water platform shale has normally a GIP content of<1 m^(3)/t,with little shale gas potential.Considering the geological and geochemical conditions of shale gas formation and preservation,the deep-water shelf facies is the most favorable target for the Lower Cambrian shale gas exploration and development in the western Hubei area,South China.展开更多
Molar tooth structure (MTS) represented by complex ptygmatical shapes is widely distributed in the Proterozoic of the world. MTS filled by fine, equant sparry calcite (or dolomite) displays an abrupt contact with ...Molar tooth structure (MTS) represented by complex ptygmatical shapes is widely distributed in the Proterozoic of the world. MTS filled by fine, equant sparry calcite (or dolomite) displays an abrupt contact with hosting rocks, which are mainly composed of carbonaceous micrites and fine-grained carbonates with local silts and stormdominated deposits with graded, cross or wave beddings, numerous erosional surfaces and truncated and fills or guttered bases. Occurrence of MTS suggests a result of the constraint of sedimentary facies, and the storm-base in ramp settings is the maximum depth for the formation of MTS. Vertical succession of MTS-bearing carbonates shows a deposition stacked by high-frequency shallow subtidal and peritidal cycles. An individual cyclic MTS-bearing sequence is characterized by thinning, shallowing and dynamic decreasing-upward, and peritidal caps of purple red iron and organic carbonaceous sediments with more complicated shapes of MTS are common on the top of individual MTS-bearing sequences.展开更多
The reservoir rock facies is presented by its principal indieators to show the aspects of sedimentary facies,diagenetic change and oil-gas indication. These indicators used by the author are 1) the petrologic──of wh...The reservoir rock facies is presented by its principal indieators to show the aspects of sedimentary facies,diagenetic change and oil-gas indication. These indicators used by the author are 1) the petrologic──of which the sedimentary facies and vitrinite reflectance are included, 2) the physical ── pore/throat di-ameter ratio and coordination number of throat connecting pore, and 3) the geochemical──photochemical parameters of individual organic inclusion. Based on the above mentioned quantitative indicators,the defined reservoir rock facies may not only be used for itself evaluation, but also may be put in facies column or facies-palaeogeographic map to predict or to trace oil-gas reservoir. Microscope photometry,micro-FT-IR and Laser Raman methods were used for studying all the aforesaid parameters by means of thinned polished sections from core or cemented cuttings, except the 3-D others, from parallel and vertical to bedding or some duplicate core samples, that the rose fluorescein preparation must be soaked in for the convenience of studying pore throat structure.展开更多
Densities and various magnetic parameters (susceptibility, saturation magnetization, saturation isothermal remanent magnetization and intrinsic coercivity) were measured for 20 representative rock samples of different...Densities and various magnetic parameters (susceptibility, saturation magnetization, saturation isothermal remanent magnetization and intrinsic coercivity) were measured for 20 representative rock samples of different lithologies from the Archean Kongling amphibolite to granulite facies terrain of the Yangtze craton. Metasedimentary rocks and tonalitic trondhjemitic granodioritic granitic (TTGG) gneisses show that values of susceptibility κ and saturation isothermal remanent magnetization SIRM are higher than those of amphibolites and gabbros. The felsic gneisses have averages of κ =(1 163±375)×10 -6 SI, SIRM =(18.23±8.38) A/m and R 1=0.083 3± 0.005 7 and the metasedimentary rocks κ =(1 236±823)×10 -6 SI, SIRM =(20.70±10.91) A/m and R I=0.071 4±0.025 2. In contrast, mafic rocks have average κ =(764±316)×10 -6 SI, SIRM = (10.46±3.94)A/m and R 1=0.036±0.009 4, and are dominated by a mixed paramagnetic and ferrimagnetic behavior. Thermal magnetic analyses indicate that magnetite and maghemite of low coercivity are the major carriers of remanent magnetism in the metaclastic sedimentary rocks and TTGG gneisses. The amphibolite and gabbro contain minor amounts of magnetite and pyrrhotite. Magnetism of metaclastic sedimentary rocks and TTGG gneisses is highly heterogeneous; variation coefficients of κ and SIRM are as high as 67 % and 53 % for the former and 32 % and 46 % for the latter. Mineral compositions suggest that biotite may be responsible for the higher magnetism of the metasedimentary rocks. The highest variations in κ, SIRM and R I exhibited by metasedimentary rocks can also be interpreted by their largest absolute variations in biotite mass fraction relative to mafic rocks and felsic gneisses. The average ratio ( Q ) of natural remanent magnetization to induced magnetization of felsic gneisses and metasediments is 0.47 . Ratios ( REM ) of natural remanent to saturation isothermal remanent magnetization ranges between 0.000 001 and 0.027 000 and averages 0.002 540. These values are comparable to those of rocks of similar lithologies from the Archean Taihua high grade terrain of the North China craton and from the Ivrea zone, northern Italy. The dominant phase of magnetism carried by the Kongling rocks is suggested to be thermal remanent magnetization. Consequently, high temperature metamorphism exceeding the Curie point of magnetite (585 ℃) might be responsible for the formation of rock magnetism of the exposed crust in the area of investigation.展开更多
In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical...In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical seismic structure is closely related to oil and gas-bearing reservoir, so it is very useful for a geologist or a geophysicist to precisely interpret the oil-bearing layers from the seismic data. This technology can be applied to any exploration or production stage. The new method has been tested on a series of exploratory or development wells and proved to be reliable in China. Hydrocarbon-detection with this new method for 39 exploration wells on 25 structures indi- cates a success ratio of over 80 percent. The new method of hydrocarbon prediction can be applied for: (1) depositional environment of reservoirs with marine fades, delta, or non-marine fades (including fluvial facies, lacustrine fades); (2) sedimentary rocks of reservoirs that are non-marine clastic rocks and carbonate rock; and (3) burial depths range from 300 m to 7000 m, and the minimum thickness of these reservoirs is over 8 m (main frequency is about 50 Hz).展开更多
In this study, the differences in reservoir parameters, such as pore radius, throat radius, and pore-throat ratio, between the east and west subsags of the Lishui Sag are analyzed by using data obtained from a constan...In this study, the differences in reservoir parameters, such as pore radius, throat radius, and pore-throat ratio, between the east and west subsags of the Lishui Sag are analyzed by using data obtained from a constant-rate mercury injection experiment. Furthermore, the quality of the reservoirs in the two subsags is systematically evaluated. Results show that the throat radius of the Lishui west subsag is larger than that of the east subsag, and this parameter has a positive correlation with reservoir quality. However, the pore-throat ratio of the east subsag is larger than that of the west subsag, which has an inverse relationship with reservoir quality. The main reasons for this reservoir difference can be attributed to sedimentation and diagenesis. The sedimentary facies types of the Lishui east subsag are the fan delta, shore lake, shallow lake, and shore shallow lake;their sandstone composition maturity is low;the clay mineral content is high;and the rock has undergone strong diagenesis. Therefore, the physical conditions of the reservoir are poor. However, the sandstones in the Lishui west subsag have weak cementation and compaction, mainly with an intergranular pore structure type, which leads to good connectivity between pores. Therefore, the storage performance and seepage capacity of the Lishui west subsag are better than those of the east subsag;the west subsag is the main area of oil and gas accumulation, as confirmed in the process of exploration and development.展开更多
Magnetic structure of the continental crust is one of the important geophysical aspects of continental lithosphere. This paper reviews the achievements in the research into the magnetic structure and its significance ...Magnetic structure of the continental crust is one of the important geophysical aspects of continental lithosphere. This paper reviews the achievements in the research into the magnetic structure and its significance for crustal tectonics, composition, metamorphic facies, crust mantle interaction and magnetization of deep crust. Further studies are suggested according to the basic principles of rock and mineral magnetism in terms of petrology, geochemistry and structural geology. Emphasis is placed on new geological ideas and synthetic studies of the relationship between deep geological processes and interpretation of gravity, magnetic, electrical and seismic data. The relationships between magnetic, density, electricity, velocity, geothermal structures and deep geodynamic processes are taken as a system for the research into the deep geology.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42030804 and 42330811)the“Deep-time Digital Earth”Science and Technology Leading Talents Team Funds for the Central Universities for the Frontiers Science Center for Deep-time Digital Earth,China University of Geosciences(Beijing)(Fundamental Research Funds for the Central UniversitiesGrant No.2652023001)。
文摘The Lower Cambrian shale gas in the western Hubei area,South China has a great resource prospect,but the gas-in-place(GIP)content in different sedimentary facies varies widely,and the relevant mechanism has been not well understood.In the present study,two sets of the Lower Cambrian shale samples from the Wells YD4 and YD5 in the western Hubei area,representing the deep-water shelf facies and shallowwater platform facies,respectively,were investigated on the differences of pore types,pore structure and methane adsorption capacity between them,and the main controlling factor and mechanism of their methane adsorption capacities and GIP contents were discussed.The results show that the organic matter(OM)pores in the YD4 shale samples are dominant,while the inorganic mineral(IM)pores in the YD5 shale samples are primary,with underdeveloped OM pores.The pore specific surface area(SSA)and pore volume(PV)of the YD4 shale samples are mainly from micropores and mesopores,respectively,while those of the YD5 shale samples are mainly from micropores and macropores,respectively.The methane adsorption capacity of the YD4 shale samples is significantly higher than that of the YD5 shale samples,with a maximum absolute adsorption capacity of 3.13 cm^(3)/g and 1.31 cm^(3)/g in average,respectively.Compared with the shallow-water platform shale,the deep-water shelf shale has a higher TOC content,a better kerogen type and more developed OM pores,which is the main mechanism for its higher adsorption capacity.The GIP content models based on two samples with a similar TOC content selected respectively from the Wells YD4 and YD5 further indicate that the GIP content of the deep-water shelf shale is mainly 34 m^(3)/t within a depth range of 1000—4000 m,with shale gas exploration and development potential,while the shallow-water platform shale has normally a GIP content of<1 m^(3)/t,with little shale gas potential.Considering the geological and geochemical conditions of shale gas formation and preservation,the deep-water shelf facies is the most favorable target for the Lower Cambrian shale gas exploration and development in the western Hubei area,South China.
文摘Molar tooth structure (MTS) represented by complex ptygmatical shapes is widely distributed in the Proterozoic of the world. MTS filled by fine, equant sparry calcite (or dolomite) displays an abrupt contact with hosting rocks, which are mainly composed of carbonaceous micrites and fine-grained carbonates with local silts and stormdominated deposits with graded, cross or wave beddings, numerous erosional surfaces and truncated and fills or guttered bases. Occurrence of MTS suggests a result of the constraint of sedimentary facies, and the storm-base in ramp settings is the maximum depth for the formation of MTS. Vertical succession of MTS-bearing carbonates shows a deposition stacked by high-frequency shallow subtidal and peritidal cycles. An individual cyclic MTS-bearing sequence is characterized by thinning, shallowing and dynamic decreasing-upward, and peritidal caps of purple red iron and organic carbonaceous sediments with more complicated shapes of MTS are common on the top of individual MTS-bearing sequences.
文摘The reservoir rock facies is presented by its principal indieators to show the aspects of sedimentary facies,diagenetic change and oil-gas indication. These indicators used by the author are 1) the petrologic──of which the sedimentary facies and vitrinite reflectance are included, 2) the physical ── pore/throat di-ameter ratio and coordination number of throat connecting pore, and 3) the geochemical──photochemical parameters of individual organic inclusion. Based on the above mentioned quantitative indicators,the defined reservoir rock facies may not only be used for itself evaluation, but also may be put in facies column or facies-palaeogeographic map to predict or to trace oil-gas reservoir. Microscope photometry,micro-FT-IR and Laser Raman methods were used for studying all the aforesaid parameters by means of thinned polished sections from core or cemented cuttings, except the 3-D others, from parallel and vertical to bedding or some duplicate core samples, that the rose fluorescein preparation must be soaked in for the convenience of studying pore throat structure.
文摘Densities and various magnetic parameters (susceptibility, saturation magnetization, saturation isothermal remanent magnetization and intrinsic coercivity) were measured for 20 representative rock samples of different lithologies from the Archean Kongling amphibolite to granulite facies terrain of the Yangtze craton. Metasedimentary rocks and tonalitic trondhjemitic granodioritic granitic (TTGG) gneisses show that values of susceptibility κ and saturation isothermal remanent magnetization SIRM are higher than those of amphibolites and gabbros. The felsic gneisses have averages of κ =(1 163±375)×10 -6 SI, SIRM =(18.23±8.38) A/m and R 1=0.083 3± 0.005 7 and the metasedimentary rocks κ =(1 236±823)×10 -6 SI, SIRM =(20.70±10.91) A/m and R I=0.071 4±0.025 2. In contrast, mafic rocks have average κ =(764±316)×10 -6 SI, SIRM = (10.46±3.94)A/m and R 1=0.036±0.009 4, and are dominated by a mixed paramagnetic and ferrimagnetic behavior. Thermal magnetic analyses indicate that magnetite and maghemite of low coercivity are the major carriers of remanent magnetism in the metaclastic sedimentary rocks and TTGG gneisses. The amphibolite and gabbro contain minor amounts of magnetite and pyrrhotite. Magnetism of metaclastic sedimentary rocks and TTGG gneisses is highly heterogeneous; variation coefficients of κ and SIRM are as high as 67 % and 53 % for the former and 32 % and 46 % for the latter. Mineral compositions suggest that biotite may be responsible for the higher magnetism of the metasedimentary rocks. The highest variations in κ, SIRM and R I exhibited by metasedimentary rocks can also be interpreted by their largest absolute variations in biotite mass fraction relative to mafic rocks and felsic gneisses. The average ratio ( Q ) of natural remanent magnetization to induced magnetization of felsic gneisses and metasediments is 0.47 . Ratios ( REM ) of natural remanent to saturation isothermal remanent magnetization ranges between 0.000 001 and 0.027 000 and averages 0.002 540. These values are comparable to those of rocks of similar lithologies from the Archean Taihua high grade terrain of the North China craton and from the Ivrea zone, northern Italy. The dominant phase of magnetism carried by the Kongling rocks is suggested to be thermal remanent magnetization. Consequently, high temperature metamorphism exceeding the Curie point of magnetite (585 ℃) might be responsible for the formation of rock magnetism of the exposed crust in the area of investigation.
基金Mainly presented at the 6-th international meeting of acoustics in Aug. 2003, and The 1999 SPE Asia Pacific Oil and GasConference and Exhibition held in Jakarta, Indonesia, 20-22 April 1999, SPE 54274.
文摘In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical seismic structure is closely related to oil and gas-bearing reservoir, so it is very useful for a geologist or a geophysicist to precisely interpret the oil-bearing layers from the seismic data. This technology can be applied to any exploration or production stage. The new method has been tested on a series of exploratory or development wells and proved to be reliable in China. Hydrocarbon-detection with this new method for 39 exploration wells on 25 structures indi- cates a success ratio of over 80 percent. The new method of hydrocarbon prediction can be applied for: (1) depositional environment of reservoirs with marine fades, delta, or non-marine fades (including fluvial facies, lacustrine fades); (2) sedimentary rocks of reservoirs that are non-marine clastic rocks and carbonate rock; and (3) burial depths range from 300 m to 7000 m, and the minimum thickness of these reservoirs is over 8 m (main frequency is about 50 Hz).
基金supported by the National Natural Science Foundation of China (Nos. 51504143 and 51674156)the SDUST Research Fund (No. 2015DJH101)the Major National R&D Projects of China (No. 2016ZX0 5027-001-006)。
文摘In this study, the differences in reservoir parameters, such as pore radius, throat radius, and pore-throat ratio, between the east and west subsags of the Lishui Sag are analyzed by using data obtained from a constant-rate mercury injection experiment. Furthermore, the quality of the reservoirs in the two subsags is systematically evaluated. Results show that the throat radius of the Lishui west subsag is larger than that of the east subsag, and this parameter has a positive correlation with reservoir quality. However, the pore-throat ratio of the east subsag is larger than that of the west subsag, which has an inverse relationship with reservoir quality. The main reasons for this reservoir difference can be attributed to sedimentation and diagenesis. The sedimentary facies types of the Lishui east subsag are the fan delta, shore lake, shallow lake, and shore shallow lake;their sandstone composition maturity is low;the clay mineral content is high;and the rock has undergone strong diagenesis. Therefore, the physical conditions of the reservoir are poor. However, the sandstones in the Lishui west subsag have weak cementation and compaction, mainly with an intergranular pore structure type, which leads to good connectivity between pores. Therefore, the storage performance and seepage capacity of the Lishui west subsag are better than those of the east subsag;the west subsag is the main area of oil and gas accumulation, as confirmed in the process of exploration and development.
基金This study is supported by the Visiting Scholar Foundation of Key Lab in University of Chinathe Ministry of Education and the
文摘Magnetic structure of the continental crust is one of the important geophysical aspects of continental lithosphere. This paper reviews the achievements in the research into the magnetic structure and its significance for crustal tectonics, composition, metamorphic facies, crust mantle interaction and magnetization of deep crust. Further studies are suggested according to the basic principles of rock and mineral magnetism in terms of petrology, geochemistry and structural geology. Emphasis is placed on new geological ideas and synthetic studies of the relationship between deep geological processes and interpretation of gravity, magnetic, electrical and seismic data. The relationships between magnetic, density, electricity, velocity, geothermal structures and deep geodynamic processes are taken as a system for the research into the deep geology.