期刊文献+
共找到3,628篇文章
< 1 2 182 >
每页显示 20 50 100
Failure characterization of fully grouted rock bolts under triaxial testing
1
作者 Hadi Nourizadeh Ali Mirzaghorbanali +3 位作者 Mehdi Serati Elamin Mutaz Kevin McDougall Naj Aziz 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期778-789,共12页
Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic st... Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism. 展开更多
关键词 Rock bolts Bolt-grout interface Bond strength Push test triaxial tests
下载PDF
Liquefaction proneness of stratified sand-silt layers based on cyclic triaxial tests 被引量:2
2
作者 Arpit Jain Satyendra Mittal Sanjay Kumar Shukla 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1826-1845,共20页
Most studies on liquefaction have addressed homogeneous soil strata using sand or sand with fine content without considering soil stratification.In this study,cyclic triaxial tests were conducted on the stratified san... Most studies on liquefaction have addressed homogeneous soil strata using sand or sand with fine content without considering soil stratification.In this study,cyclic triaxial tests were conducted on the stratified sand specimens embedded with the silt layers to investigate the liquefaction failures and void-redistribution at confining stress of 100 kPa under stress-controlled mode.The loosening of underlying sand mass and hindrance to pore-water flow caused localized bulging at the sand-silt interface.It is observed that at a silt thickness of 0.2H(H is the height of the specimen),nearly 187 load cycles were required to attain liquefaction,which was the highest among all the silt thicknesses with a single silt layer.Therefore,0.2H is assumed as the optimum silt thickness(t_(opt)).The silt was placed at the top,middle and bottom of the specimen to understand the effect of silt layer location.Due to the increase in depth of the silt layer from the top position(capped soil state)to the bottom,the cycles to reach liquefaction(N_(cyc,L))increased 2.18 times.Also,when the number of silt layers increased from single to triple,there was an increase of about 880%in N_(cyc,L).The micro-characterization analysis of the soil specimens indicated silty materials transported in upper sections of the specimen due to the dissipated pore pressure.The main parameters,including thickness(t),location(z),cyclic stress ratio(CSR),number of silt layers(n)and modified relative density(D_(r,m)),performed significantly in governing the lique-faction resistance.For this,a multilinear regression model is developed based on critical parameters for prediction of N_(cyc,L).Furthermore,the developed constitutive model has been validated using the data from the present study and earlier findings. 展开更多
关键词 Cyclic triaxial tests Soil stratification Soil liquefaction Regression model
下载PDF
Intermittent disturbance mechanical behavior and fractional deterioration mechanical model of rock under complex true triaxial stress paths 被引量:1
3
作者 Zhi Zheng Hongyu Xu +3 位作者 Kai Zhang Guangliang Feng Qiang Zhang Yufei Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期117-136,共20页
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona... Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads. 展开更多
关键词 True triaxial static and disturbance test Mechanical properties Failure mechanism and precursor Intermittent disturbance effect Fractional mechanical model
下载PDF
Assessment of cyclic deformation and critical stress amplitude of jointed rocks via cyclic triaxial testing
4
作者 Waranga Habaraduwa Peellage Behzad Fatahi Haleh Rasekh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1370-1390,共21页
Jointed rock specimens with a natural replicated joint surface oriented at a mean dip angle of 60were prepared,and a series of cyclic triaxial tests was performed at different confining pressures and cyclic deviatoric... Jointed rock specimens with a natural replicated joint surface oriented at a mean dip angle of 60were prepared,and a series of cyclic triaxial tests was performed at different confining pressures and cyclic deviatoric stress amplitudes.The samples were subjected to 10,000 loading-unloading cycles with a frequency of 8 Hz.At each level of confining pressure,the applied cyclic deviatoric stress amplitude was increased incrementally until excessive deformation of the jointed rock specimen was observed.Analysis of the test results indicated that there existed a critical cyclic deviatoric stress amplitude(i.e.critical dynamic deviatoric stress)beyond which the jointed rock specimens yielded.The measured critical dynamic deviatoric stress was less than the corresponding static deviatoric stress.At cyclic deviatoric stress amplitudes less than the critical dynamic deviatoric stress,minor cumulative residual axial strains were observed,resulting in hysteretic damping.However,for cyclic deviatoric stresses beyond the critical dynamic deviatoric stress,the plastic strains increased promptly,and the resilient moduli degraded rapidly during the initial loading cycles.Cyclic triaxial test results showed that at higher confining pressures,the ultimate residual axial strain attained by the jointed rock specimen decreased,the steadystate dissipated energy density and steady-state damping ratio per load cycle decreased,while steadystate resilient moduli increased. 展开更多
关键词 Cyclic triaxial test Jointed rock Joint surface Confining pressure Cyclic deviatoric stress amplitude FAILURE Residual deformation Dissipated energy
下载PDF
Triaxial tension and compression tests on saturated lime-treated plastic clay upon consolidated undrained conditions
5
作者 Kuchvichea Kan Bertrand François 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3328-3342,共15页
Lime-treatment of clayey soil significantly increases its shear and tensile strengths.Consequently,the tensile strength of lime-treated soils deserves careful investigation because it may provide an appreciable benefi... Lime-treatment of clayey soil significantly increases its shear and tensile strengths.Consequently,the tensile strength of lime-treated soils deserves careful investigation because it may provide an appreciable benefit for the stability of earth structures.This study investigates the tensile and shear strengths of an untreated and lime-treated(3%of lime)plastic clay at different curing times(7 d,56 d and 300 d),through triaxial tension and compression tests.Triaxial tension tests are performed using“diabolo-shaped”soil samples with reduced central section,such that the central part of the specimen can be under axial tension while both end-sections remain in axial compression.Consolidated undrained(CU)conditions with measurement of pore water pressure allow analyzing the failure conditions through effective stress and total stress approaches.The results of triaxial tension tests reveal that the failure occurs under tensile mode at low confining pressure while extensional shear failure mode is observed under higher confining pressure.Consequently,a classical Mohr-Coulomb shear failure criterion must be combined with a cut-off tensile strength criterion that is not affected by the confining pressure.When comparing shear failure under compression and tension,a slight anisotropy is observed. 展开更多
关键词 Tensile strength Consolidated undrained(CU)triaxial test Lime-treated soils Failure criterion
下载PDF
Microdynamic mechanical properties and fracture evolution mechanism of monzogabbro with a true triaxial multilevel disturbance method
6
作者 Zhi Zheng Bin Deng +3 位作者 Hong Liu Wei Wang Shuling Huang Shaojun Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期385-411,共27页
The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the... The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated. 展开更多
关键词 True triaxial disturbance test Mechanical properties Fracture evolution mechanism Disturbance-induced damage evolution Failure mechanism and precursor
下载PDF
Relationship between repeated triaxial test and Hamburg wheel tracking test on asphalt mixtures 被引量:4
7
作者 朱浩然 杨军 +1 位作者 史啸 陆海珠 《Journal of Southeast University(English Edition)》 EI CAS 2010年第1期117-121,共5页
Both the repeated triaxial test (RTT) and the Hamburg wheel tracking test (HWTT) are adopted to evaluate the high temperature performance of the stone mastic asphalt (SMA) and the mastic asphalt (MA). The corr... Both the repeated triaxial test (RTT) and the Hamburg wheel tracking test (HWTT) are adopted to evaluate the high temperature performance of the stone mastic asphalt (SMA) and the mastic asphalt (MA). The correlation of the permanent deformations of the MA and the correlation of the deformation developments of the SMA between the two tests are analyzed, respectively. Results show that both the two tests can effectively identify the high temperature performance of mixtures, and the correlation between the final results of the two tests as well as that between the deformation developments of the two tests are excellent with R20.9. In order to further prove the correlation, viscoelastic parameters estimated from the RTT results is used to simulate the rutting development in the HWTT slabs by the finite element method (FEM). Results indicate that the correlation between the two tests is significant with errors less than 10%. It is suitable to predict the rutting development with the viscoelastic parameters obtained from the RTT. 展开更多
关键词 asphalt mixture repeated triaxial test Hamburg wheel tracking test CORRELATION high temperature performance finite element method
下载PDF
Triaxial creep tests of weak sandstone from fracture zone of high dam foundation 被引量:12
8
作者 张玉 徐卫亚 +1 位作者 顾锦健 王伟 《Journal of Central South University》 SCIE EI CAS 2013年第9期2528-2536,共9页
The lithology of fracture zone which was developed at the dam foundation of a hydropower station is weak sandstone with poor integrity and pore cementation contact.Its creep properties have a significant impact on the... The lithology of fracture zone which was developed at the dam foundation of a hydropower station is weak sandstone with poor integrity and pore cementation contact.Its creep properties have a significant impact on the deformation and stability of the dam.Based on the characteristics of loose organizational structure,high moisture content and poor mechanical properties,the triaxial compression tests and creep tests were carried out,respectively.The results show significant non-linear,low strength and no obvious strength peaks.Both axial and lateral strains are achieved more than 3%when the tests are failed.The weak sandstone has a significant creep property,but only transient and steady state appear under low stress.Increased stress causes creep intensified and lateral strain gradually exceeds axial strain.In the failure stage,it has characteristics of large axial plastic deformation,obvious volumetric ductility dilation and large steady creep rate.The accelerated creep appears shortly after transient loading under confining of pressures 1.0 MPa and 1.5 MPa.Therefore,an improved Burgers creep model considering the non-linear characteristics of weak sandstone is built based on hyperbolic equation and the creep parameters are identified.This model can well describe the creep properties of weak sandstone. 展开更多
关键词 hydropower station weak sandstone creep properties triaxial compression tests triaxial creep tests improved Burgers creep model
下载PDF
Stress-strain behavior of plastic concrete using monotonic triaxial compression tests 被引量:14
9
作者 Y.Pashang Pisheh S.M.Mir Mohammad Hosseini 《Journal of Central South University》 SCIE EI CAS 2012年第4期1125-1131,共7页
The mechanical behavior of plastic concrete used in the cut-off walls of earth dams has been studied. Triaxial compression tests on the specimens in various ages and mix designs under different confining pressures hav... The mechanical behavior of plastic concrete used in the cut-off walls of earth dams has been studied. Triaxial compression tests on the specimens in various ages and mix designs under different confining pressures have been done and the stress-strain behavior of such materials and their strength parameter changes have been experimentally investigated. It has been observed that increasing the confining pressures applied on the specimens causes the material behavior to be alike the more ductile materials and the compressive strength increases considerably as well. Moreover, a parametric study has been carded out to investigate the influence of essential parameters on the shear strength parameters of these materials. According to the research, increasing the coarse to fine aggregates ratio leads to the increase of compressive strength of the specimens as well as the increase of the cohesion and internal friction angle of the materials. Furthermore, the bentonite content decrease and the cement factor increase result in an increase of the cohesion parameter of plastic concretes and decrease of the internal friction angle of such materials. 展开更多
关键词 plastic concrete stress-strain behavior triaxial compression test STRENGTH elastic modulus
下载PDF
Effects of stress conditions on rheological properties of granular soil in large triaxial rheology laboratory tests 被引量:3
10
作者 陈晓斌 张家生 +1 位作者 刘宝琛 唐孟雄 《Journal of Central South University》 SCIE EI CAS 2008年第S1期397-401,共5页
In order to study the rheological properties of red stone granular soil,a series of rheological experiments were executed on large tri-axial rheological apparatus.Under 100,200 and 300 kPa confining stress conditions,... In order to study the rheological properties of red stone granular soil,a series of rheological experiments were executed on large tri-axial rheological apparatus.Under 100,200 and 300 kPa confining stress conditions,the rheological tests were carried out.These experiment results showed that the stress conditions,especially the stress level were the critical influencing factors of the rheological deformation properties.Under the low stress level(S=0.1),the granular soil showed the elastic properties,and there was no obvious rheological deformation.Under the middle stress level(0.2<S≤0.6),creep curves showed the linear viscoelastic rheological properties.However,under the high stress level(S>0.8) creep curves showed the non-linear viscous plastic rheological properties.Especially,under the stress level of S=1.0,the accelerated rheological phase of creep curves occurred at early time with a trend of failure.The stress level had obvious effects on the final rheological deformation of the soil sample,and the final rheological deformation increments nonlinearly increased with stress level.The final rheological deformation increment and step was little under low stress level,while it became large under high stress level,which showed the nonlinearly rheological properties of the granular soil.The confining pressure also had direct effects on final rheological deformation,and the final rheological deformation linearly increased with confining pressure increments. 展开更多
关键词 stress conditions GRANULAR SOIL CREEP LARGE triaxial rheology test redstone GRANULAR SOIL final CREEP deformation
下载PDF
Strength and deformation behaviour of coarse-grained soil by true triaxial tests 被引量:7
11
作者 施维成 朱俊高 +1 位作者 赵仲辉 刘汉龙 《Journal of Central South University》 SCIE EI CAS 2010年第5期1095-1102,共8页
In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil, a series of true triaxial tests were performed. The tests were conducted in ... In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil, a series of true triaxial tests were performed. The tests were conducted in a recently developed true triaxial apparatus with constant minor principal stress σ3 and constant value of intermediate principal stress ratio b=(σ2-σ3)/(σ1-σ3) (al is the vertical stress, and % is the horizontal stress). It is found that the intermediate principal strain, ε2, increases from negative to positive value with the increase of parameter b from zero to unity under a constant minor principal stress. The minor principal strain, ε3, is always negative. This implies that the specimen exhibits an evident anisotropy. The relationship between b and friction angle obtained from the tests is different from that predicted by LADE-DUNCAN and MATSUOKA-NAKAI criteria. Based on the test results, an empirical equation of g(b) that is the shape function of the failure surface on re-plane was presented. The proposed equation is verified to be reasonable by comparing the predicted results using the equation with true triaxial test results of soils, such as coarse-grained soils in this study, sands and gravels in other studies. 展开更多
关键词 cohesionless soil coarse-grained soil true triaxial test STRENGTH DEFORMATION failure criterion
下载PDF
Creep properties and permeability evolution in triaxial rheological tests of hard rock in dam foundation 被引量:7
12
作者 XU Wei-ya WANG Ru-bin +3 位作者 WANG Wei ZHANG Zhi-liang ZHANG Jiu-chang WANG Wen-yuan 《Journal of Central South University》 SCIE EI CAS 2012年第1期252-261,共10页
Triaxial creep tests were carried out under seepage pressure by using rock servo-controlled triaxial rheology testing equipment. Based on experimental results, rock rheological properties influenced by seepage-stress ... Triaxial creep tests were carried out under seepage pressure by using rock servo-controlled triaxial rheology testing equipment. Based on experimental results, rock rheological properties influenced by seepage-stress coupling were studied, and variations of seepage rate with time in complete creep processes of rock were analyzed. It is shown that, when the applied stress is less than failure stress level, the creep deformation is not obvious, and its main form is steady-state creep. When applied stress level is greater than or less than but close to fracture stress, it is easier to see the increase of creep deformation and the more obvious accelerative creep characteristics. The circumferential creep deformation is obviously higher than the axial creep deformation. At the stage of steady-state creep, the average of seepage flow rate is about 4.7×10-9 rn/s at confining pressure (tr3) of 2 MPa, and is about 3.9×10-9 m/s at a3 of 6 MPa. It is seen that the seepage flow rate at or3 of 2 MPa in this case is obviously larger than that at tr3 of 6 MPa. At the stage of creep acceleration, the seepage flow rate is markedly increased with the increase of time. The variation of rock permeability is directly connected to the growth and evolution of creep crack. It is suggested that the permeability coefficient in complete creep processes of rock is not a constant, but is a function of rock creep strain, confining pressure, damage variable and pore water pressure. The results can be considered to provide a reliable reference for the establishment of rock rheological model and parameter identification. 展开更多
关键词 rock mechanics creep properties volcanic breccia triaxial rheology test permeability evolution creep damage
下载PDF
Temperature-controlled triaxial compression/creep test device for thermodynamic properties of soft sedimentary rock and corresponding theoretical prediction 被引量:2
13
作者 Sheng Zhang Hirotomo Nakano +2 位作者 Yonglin Xiong Tomohiro Nishimura Feng Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第3期255-261,共7页
In deep geological disposal of high-level nuclear waste,one of the most important subjects is to estimate long-term stability and strength of host rock under high temperature conditions caused by radioactive decay of ... In deep geological disposal of high-level nuclear waste,one of the most important subjects is to estimate long-term stability and strength of host rock under high temperature conditions caused by radioactive decay of the waste.In this paper,some experimental researches on the thermo-mechanical characteristics of soft sedimentary rock have been presented.For this reason,a new temperature-controlled triaxial compression and creep test device,operated automatically by a computer-controlled system,whose control software has been developed by the authors,was developed to conduct the thermo-mechanical tests in different thermal loading paths,including an isothermal path.The new device is proved to be able to conduct typical thermo-mechanical element tests for soft rock.The test device and the related testing method were introduced in detail.Finally,some test results have been simulated with a thermo-elasto-viscoplastic model that was also developed by the authors. 展开更多
关键词 temperature control soft sedimentary rock thermal triaxial compression test thermal triaxial creep test
下载PDF
Soil-water characteristics and shear strength in constant water content triaxial tests on Yunnan red clay 被引量:6
14
作者 马少坤 黄茂松 +1 位作者 扈萍 杨超 《Journal of Central South University》 SCIE EI CAS 2013年第5期1412-1419,共8页
The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure g... The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure generally dissipates instantaneously while the excess pore-water pressure dissipates with time. This condition needs to be simulated in a constant water content (CW) triaxial test. The study on Yunnan red clay is carried out to investigate the soil-water characteristics and the shear strength characteristics under the constant water content condition. Osmotic technique is used to obtain the soil-water characteristic curve. A series of CW triaxial tests are conducted on statically compacted specimens. The experimental results show that the soil-water characteristic curve has a low air entry value of 7 kPa due to large pores in non-uniform pore size distribution, and a high residual value exceeding 10 MPa. In addition, the initial degree of saturation and net confining stress play an important role in affecting the shear characteristics under the constant water content condition. Finally, a new semi-empirical shear strength model in terms of degree of saturation is proposed and then applied to Yuunan red clay. Simulation result shows that the model is capable of capturing some key features of soils. The model can be used in whole engineering practice range, covering both unsaturmed and saturated soils. 展开更多
关键词 Yunnan red clay soil-water characteristic curve shear strength constant water triaxial test
下载PDF
A multi-stage triaxial testing procedure for low permeable geomaterials applied to Opalinus Clay 被引量:1
15
作者 Katrin M. Wild Marco Barla +1 位作者 Giovanni Turinetti Florian Amann 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第3期137-148,共12页
In many engineering applications,it is important to determine both effective rock properties and the rock behavior which are representative for the problem’s in situ conditions.For this purpose,rock samples are usual... In many engineering applications,it is important to determine both effective rock properties and the rock behavior which are representative for the problem’s in situ conditions.For this purpose,rock samples are usually extracted from the ground and brought to the laboratory to perform laboratory experiments such as consolidated undrained(CU)triaxial tests.For low permeable geomaterials such as clay shales,core extraction,handling,storage,and specimen preparation can lead to a reduction in the degree of saturation and the effective stress state in the specimen prior to testing remains uncertain.Related changes in structure and the effect of capillary pressure can alter the properties of the specimen and affect the reliability of the test results.A careful testing procedure including back-saturation,consolidation and adequate shearing of the specimen,however,can overcome these issues.Although substantial effort has been devoted during the past decades to the establishment of a testing procedure for low permeable geomaterials,no consistent protocol can be found.With a special focus on CU tests on Opalinus Clay,this study gives a review of the theoretical concepts necessary for planning and validating the results during the individual testing stages(saturation,consolidation,and shearing).The discussed tests protocol is further applied to a series of specimens of Opalinus Clay to illustrate its applicability and highlight the key aspects. 展开更多
关键词 triaxial test Saturation CONSOLIDATION UNDRAINED Opalinus Clay Clay shale
下载PDF
An anisotropic constitutive model of geomaterials based on true triaxial testing and its application 被引量:1
16
作者 ZHANG Kun-yong Frederick Nai Charkley 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1430-1442,共13页
Series of testing on coarse grained soils were carried out with a true triaxial testing apparatus. The loads were applied from the major principal and minor principal directions, respectively, to simulate the construc... Series of testing on coarse grained soils were carried out with a true triaxial testing apparatus. The loads were applied from the major principal and minor principal directions, respectively, to simulate the construction and water impounding process of a rock fill dam. The stress and strain relationships induced by the different loading methods were investigated. A remarkable stress-induced anisotropy under complex stress state was observed. Contrary to popular assumptions in traditional numerical analysis and constitutive models, it was found that different elastic modulus and Poisson ratio exist in different principal directions in rock fill dams. From the testing results, an anisotropic constitutive model based on Duncan-Chang nonlinear model is presented to overcome the limitations of axi-symmetric assumptions in conventional triaxial experiments and constitutive models. Both models were then applied in FEM analysis of an under-construction earth core high rock soil filled dam with the focus on hydraulic fracturing. The study reveals the major biases that exist when numerical analysis and constitutive models do not give serious consideration to the intermediate principal stress and anisotropy effects in soil rock built structures. 展开更多
关键词 TRUE triaxial test STRESS induced ANISOTROPY CONSTITUTIVE model complex STRESS state finite element method (FEM)
下载PDF
Ringlike failure experiment of thick-walled limestone cylinder specimens in triaxial unloading tests 被引量:2
17
作者 Zhang Houquan He Yongnian Liu Honggang Han Lijun Shao Peng 《Mining Science and Technology》 EI CAS 2011年第3期445-450,共6页
In order to study the failure of surrounding rock under high in situ stress in deep underground engineering projects, disturbed by excavation unloading, we carried out triaxial unloading experiments using thickwalled ... In order to study the failure of surrounding rock under high in situ stress in deep underground engineering projects, disturbed by excavation unloading, we carried out triaxial unloading experiments using thickwalled cylinder specimens on a TATW-2000 rock servo-controlled triaxial testing machine in a laboratory. The specimens were made of limestone material, taken from Tongshan county, Xuzhou city, Jiangsu province, China. In our experiments, rock deformation and failure behavior was studied through loading and unloading of inner hole pressure of thick-walled cylinder specimens. At first, the axial stress, confining pressure and inner pressure were increased simultaneously to a specified designed state of stress. Then, keeping the axial stress and confining pressure stable, the pressure on the inner hole was decreased until the specimen was fractured. When the inner pressure was released completely but the specimen did not fracture, the confining pressure was decreased subsequently until complete failure occurred. Our experimental results suggest that traces of major circular ringlike fractures with a number of radial cracks often appear in thick cylinder walls. This type of ringlike failure phenomenon, similar to intermittent zonal fracturing characteristics of deep exploitation, has, so far, not been published. Our experimental results show that rock deformation and failure behavior of thick-walled limestone cylinders vary under different stress paths between loading and unloading. Tensile failure and orderly failure surfaces occur under unloading conditions while irregular damaged rock blocks are produced during loading failure. This type of triaxial unloading experiment provides for new research methodology and approach for thorough investigations on intermittent zonal fracturing in deep underground excavations. 展开更多
关键词 Thick-walled cylinder specimens triaxial tests Unloading Ringlike failure
下载PDF
Experimental study of the dynamic mechanical responses and failure characteristics of coal under true triaxial confinements 被引量:3
18
作者 Zhanguo Ma Pengfei Yan +3 位作者 Shixing Cheng Peng Gong Fuzhou Qi Jianguo Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第6期761-772,共12页
Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson b... Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson bar was employed to explore the dynamic mechanical behaviors of coal at different confining pressures(0–20 MPa)and strain rates(40–220 s^(-1)).The results show that the dynamic peak stress is positively correlated with lateral static pre-stressσy andσz,but negatively correlated with axial static prestressσx.At approximate strain rates,increasing the lateral static pre-stress facilitates increasing the dynamic peak stress,but the minimum lateral static pre-stress is the primary factor limiting a significant increase in dynamic peak stress of coal.Furthermore,the dynamic differential stress is linearly related to the logarithm of strain rate,and the peak strain varies linearly with strain rate.However,there is no significant correlation between confining pressure and peak strain.Moreover,X-ray CT images and photographic fracture observations of coal samples show the failure patterns under uniaxial and triaxial conditions are splitting failure and shear failure,respectively.The device provides a viable approach for fully comprehending the dynamic mechanical behaviors of rock-like material in complex stress conditions. 展开更多
关键词 COAL True triaxial SHPB test Dynamic mechanical properties Failure characteristics
下载PDF
Temperature effects on the mechanical properties of slates in triaxial compression test
19
作者 MENG Lu-bo LI Tian-bin CAI Guo-jun 《Journal of Mountain Science》 SCIE CSCD 2017年第12期2581-2588,共8页
High geothermal temperatures appear to be unfavorable for the construction of tunnels in slate rocks with high overburden. To investigate the mechanical characteristics of slates at various levels of geothermal temper... High geothermal temperatures appear to be unfavorable for the construction of tunnels in slate rocks with high overburden. To investigate the mechanical characteristics of slates at various levels of geothermal temperature, conventional triaxial compression tests at different levels of confining stress were carried out at 4 different temperatures from 20℃ to 120℃. The obtained results show high confining pressures weaken the thermal effects on rock mechanical characteristics while higher temperatures enhance the effect of confining pressure.At higher levels of confining stress the thermal effects on the rock strength characteristics decrease. The higher the temperature, the larger is the effect of confining pressure on the mechanical characteristics of the slate. Increase of temperature leads to a decrease of the peak strength but increases the deformability and ductility of the slate, the thermo effect on the peak strength and Poisson's ratio is larger than on the elastic modulus. Higher temperatures reduce the shear strength of slate, the decrease is mainly caused by a decrease of the cohesion. In general, the slate samples fail in shear failure. 展开更多
关键词 Temperature effect SLATE Mechanical feature triaxial test
下载PDF
Experimental Study on Excavation Characteristics of Rockmass by Triaxial Test
20
作者 谢红强 姚勇 +1 位作者 何川 杨庆 《Journal of Southwest Jiaotong University(English Edition)》 2004年第2期178-183,共6页
Applying MTS rock stiffness test machine, tests under triaxial condition were carried out for rockmass under loading and unloading. By measuring and analyzing such mechanical properties as stress, strain, elastic modu... Applying MTS rock stiffness test machine, tests under triaxial condition were carried out for rockmass under loading and unloading. By measuring and analyzing such mechanical properties as stress, strain, elastic modulus, Poisson ratio and elastic wave velocity during the whole test process, the differences of mechanical characteristics under loading and unloading conditions were revealed, to provide some useful references for excavation. 展开更多
关键词 Excavation characteristic LOADING UNLOADING triaxial test MTS
下载PDF
上一页 1 2 182 下一页 到第
使用帮助 返回顶部