This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems...This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems via electrons/protons reactions without forming molecular H_(2)as an intermediate,overcoming the thermodynamics limitations and practical issues encountered for electro-fuels produced by multistep thermocatalytic processes(i.e.CO_(2)conversion with H_(2)coming from water electrolysis).A distributed and decentralized production of SFs requires very compact,highly integrated,and intensified technologies.Among the existing reactors of advanced design(based on artificial leaves or photosynthesis),the integrated photovoltaic plus electrocatalytic(PV-EC)device is the only system(demonstrated at large scale)to produce SFs with high solar-to-fuel(STF)efficiency.However,while the literature indicates STF efficiency as the main(and only)measure of process performance,we remark here the need to refer to productivity(in terms of current density)and make tests with reliable flow PEC systems(with electrodes of at least 5–10 cm^(2))to accelerate the scaling-up process.Using approaches that minimize downstream separation costs is also mandatory.Many limitations exist in PEC systems,but most can be overcome by proper electrode and cell engineering,thus going beyond the properties of the electrocatalysts.As examples of current developments,we present the progress of(i)artificial leaf/tree devices for green H_(2)distributed production and(ii)a PEC device producing the same chemicals at both cathode and anode parts without downstream operations for green solvent distributed production.Based on these developments,future directions,such as producing fertilizers and food components from the air,are outlined.The aim is to provide new ideas and research directions from a personal perspective.展开更多
Portable and furnished electronics appliances demand power efficient energy storage devices where electrochemical supercapacitors gain much more attention.In this concern,a simple,low-cost and industry scalable succes...Portable and furnished electronics appliances demand power efficient energy storage devices where electrochemical supercapacitors gain much more attention.In this concern,a simple,low-cost and industry scalable successive ionic layer adsorption and reaction(SILAR)approach has been adopted to deposit nanostructured VS_2onto flexible and light-weight stainless steel(SS)substrate towards supercapacitor application.The nanocrystalline nature with hexagonal crystal structure has been confirmed for VS_2through structural analysis.The VS_2electrode exhibits a maximum specific capacitance of 349 F g^(-1)with a super stable behavior in three-electrode liquid-state configuration.Fabricated flexible symmetric solid-state supercapacitor(FSSC)device using gel electrolyte yields specific power of 1.5 k W kg^(-1)(specific energy of 25.9 Wh kg^(-1))with a widen voltage window of 1.6 V.A red LED has been glown for30 s using the system consisted of two devices in series combination.Furthermore,the system glows a combination of 21 red LEDs network with acronym‘VNIT’,demonstrating commercial exposure.The attribution of device demonstration even under mechanical stress holds great promise towards advanced flexible electronics application.展开更多
Conducting polymers have been studied extensively. An interesting property of the conducting polymer is that the conductivity of some polymers, such as polypyrrolc, polyaniline, poly(3-methylthiophene) etc. , is affec...Conducting polymers have been studied extensively. An interesting property of the conducting polymer is that the conductivity of some polymers, such as polypyrrolc, polyaniline, poly(3-methylthiophene) etc. , is affected by the voltage applied to them. For polypyrrole, the oxidized state is an electronic conductor and the reduced state is essentially insulating. Using this property, one can fabricate the polymer-based electronic devices. Experimental results of Pickun展开更多
Lead halide perovskite solar cells(PSCs) have become a promising next-generation photovoltaic technology due to their skyrocketed power conversion efficiency. However, the device stability issues may restrict their co...Lead halide perovskite solar cells(PSCs) have become a promising next-generation photovoltaic technology due to their skyrocketed power conversion efficiency. However, the device stability issues may restrict their commercial applications, which are dominated by various chemical reactions of perovskite layers. Hence, a comprehensive illustration on the stability of perovskite films in PSCs is urgently needed. In this review article, chemical reactions of perovskite films under different environmental conditions(e.g., moisture,oxygen, light) and with charge transfer materials and metal electrodes are systematically elucidated. Effective strategies for suppressing the degradation reactions of perovskites, such as buffer layer introduction and additives engineering,are specified. Finally, conclusions and outlooks for this field are proposed. The comprehensive review will provide a guideline on the material engineering and device design for PSCs.展开更多
Black phosphorus (BP), an attractive two-dimensional (2D) semiconductor, is widely used in the fields of optoelec- tronic devices, biomedicine, and chemical sensing. Silver ion (Ag+), a commonly used additive i...Black phosphorus (BP), an attractive two-dimensional (2D) semiconductor, is widely used in the fields of optoelec- tronic devices, biomedicine, and chemical sensing. Silver ion (Ag+), a commonly used additive in food industry, can sterilize and keep food fresh. But excessive intake of Ag+ will harm human health. Therefore, high sensitive, fast and simple Ag+ detection method is significant. Here, a high-performance BP field effect transistor (FET) sensor is fabricated for Ag+ detection with high sensitivity, rapid detection speed, and wide detection concentration range. The detection limit for Ag+ is 10 l0 mol/L. Testing time for each sample by this method is 60 s. Besides, the mechanism of BP-FET sensor for Ag+ detection is investigated systematically. The simple BP-FET sensor may inspire some relevant research and potential applications, such as providing an effective method for the actual detection of Ag+, especially in wimessed inspections field of food.展开更多
Metal-tip/Pr0.7Ca0.3MnO3/Pt devices possess two types of I-V hysteresis: clockwise vs counter clockwise depending on the tip materials. The criteria for categorization of these two types of devices can be simply base...Metal-tip/Pr0.7Ca0.3MnO3/Pt devices possess two types of I-V hysteresis: clockwise vs counter clockwise depending on the tip materials. The criteria for categorization of these two types of devices can be simply based on whether the Gibbs free energy of oxidation for the metal tip is lower or higher than that of PCMO, respectively. While the clockwise hysteresis can be attributed to electric field induced oxidation/reduction, the counter clockwise hysteresis can be explained by oxygen vacancy migration in an electrical field. Alternating-current conductance spectra also reveal distinct hopping barriers between these two categories of devices at high resistive states.展开更多
InGaAs high electron mobility transistors (HEMTs) on InP substrate with very good device performance have been grown by mental organic chemical vapor deposition (MOCVD). Room temperature Hall mobilities of the 2-D...InGaAs high electron mobility transistors (HEMTs) on InP substrate with very good device performance have been grown by mental organic chemical vapor deposition (MOCVD). Room temperature Hall mobilities of the 2-DEG are measured to be over 8 700 cm^2/V-s with sheet carrier densities larger than 4.6× 10^12 cm^ 2. Transistors with 1.0 μm gate length exhibits transconductance up to 842 mS/ram. Excellent depletion-mode operation, with a threshold voltage of-0.3 V and IDss of 673 mA/mm, is realized. The non-alloyed ohmic contact special resistance is as low as 1.66×10^-8 Ω/cm^2, which is so far the lowest ohmic contact special resistance. The unity current gain cut off frequency (fT) and the maximum oscillation frequency (fmax) are 42.7 and 61.3 GHz, respectively. These results are very encouraging toward manufacturing InP-based HEMT by MOCVD.展开更多
基金the EU for providing support to these activities through the EU projects DECADE(862030),EPOCH(101070976)and SCOPE(810182)。
文摘This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems via electrons/protons reactions without forming molecular H_(2)as an intermediate,overcoming the thermodynamics limitations and practical issues encountered for electro-fuels produced by multistep thermocatalytic processes(i.e.CO_(2)conversion with H_(2)coming from water electrolysis).A distributed and decentralized production of SFs requires very compact,highly integrated,and intensified technologies.Among the existing reactors of advanced design(based on artificial leaves or photosynthesis),the integrated photovoltaic plus electrocatalytic(PV-EC)device is the only system(demonstrated at large scale)to produce SFs with high solar-to-fuel(STF)efficiency.However,while the literature indicates STF efficiency as the main(and only)measure of process performance,we remark here the need to refer to productivity(in terms of current density)and make tests with reliable flow PEC systems(with electrodes of at least 5–10 cm^(2))to accelerate the scaling-up process.Using approaches that minimize downstream separation costs is also mandatory.Many limitations exist in PEC systems,but most can be overcome by proper electrode and cell engineering,thus going beyond the properties of the electrocatalysts.As examples of current developments,we present the progress of(i)artificial leaf/tree devices for green H_(2)distributed production and(ii)a PEC device producing the same chemicals at both cathode and anode parts without downstream operations for green solvent distributed production.Based on these developments,future directions,such as producing fertilizers and food components from the air,are outlined.The aim is to provide new ideas and research directions from a personal perspective.
文摘Portable and furnished electronics appliances demand power efficient energy storage devices where electrochemical supercapacitors gain much more attention.In this concern,a simple,low-cost and industry scalable successive ionic layer adsorption and reaction(SILAR)approach has been adopted to deposit nanostructured VS_2onto flexible and light-weight stainless steel(SS)substrate towards supercapacitor application.The nanocrystalline nature with hexagonal crystal structure has been confirmed for VS_2through structural analysis.The VS_2electrode exhibits a maximum specific capacitance of 349 F g^(-1)with a super stable behavior in three-electrode liquid-state configuration.Fabricated flexible symmetric solid-state supercapacitor(FSSC)device using gel electrolyte yields specific power of 1.5 k W kg^(-1)(specific energy of 25.9 Wh kg^(-1))with a widen voltage window of 1.6 V.A red LED has been glown for30 s using the system consisted of two devices in series combination.Furthermore,the system glows a combination of 21 red LEDs network with acronym‘VNIT’,demonstrating commercial exposure.The attribution of device demonstration even under mechanical stress holds great promise towards advanced flexible electronics application.
基金Supported by the National Natural Science Foundation of China
文摘Conducting polymers have been studied extensively. An interesting property of the conducting polymer is that the conductivity of some polymers, such as polypyrrolc, polyaniline, poly(3-methylthiophene) etc. , is affected by the voltage applied to them. For polypyrrole, the oxidized state is an electronic conductor and the reduced state is essentially insulating. Using this property, one can fabricate the polymer-based electronic devices. Experimental results of Pickun
基金financially supported by the Research Grants Council (RGC) of Hong Kong, China (Project No. 15306822)Innovation and Technology Commission of Hong Kong, China (Innovation and Technology Fund-Guangdong-Hong Kong Technology Cooperation Funding Scheme (ITF-TCFS), Project No. GHP/042/19SZ)+2 种基金financially supported by the Research Institute of Intelligent Wearable Systems of the Hong Kong Polytechnic University, Hong Kong, China (Project Code: CD46)supported by the funding for Projects of Strategic Importance of the Hong Kong Polytechnic University (Project Code: 1-ZE2X)supported by Shenzhen Science and Technology Innovation Commission, (Project No.: SGDX20210823103401011)。
文摘Lead halide perovskite solar cells(PSCs) have become a promising next-generation photovoltaic technology due to their skyrocketed power conversion efficiency. However, the device stability issues may restrict their commercial applications, which are dominated by various chemical reactions of perovskite layers. Hence, a comprehensive illustration on the stability of perovskite films in PSCs is urgently needed. In this review article, chemical reactions of perovskite films under different environmental conditions(e.g., moisture,oxygen, light) and with charge transfer materials and metal electrodes are systematically elucidated. Effective strategies for suppressing the degradation reactions of perovskites, such as buffer layer introduction and additives engineering,are specified. Finally, conclusions and outlooks for this field are proposed. The comprehensive review will provide a guideline on the material engineering and device design for PSCs.
基金Project support by the National Natural Science Foundation of China(Grant Nos.61605131 and 61435010)the Shenzhen Science and Technology Research Fund,China(Grant No.JCYJ20150324141711624)
文摘Black phosphorus (BP), an attractive two-dimensional (2D) semiconductor, is widely used in the fields of optoelec- tronic devices, biomedicine, and chemical sensing. Silver ion (Ag+), a commonly used additive in food industry, can sterilize and keep food fresh. But excessive intake of Ag+ will harm human health. Therefore, high sensitive, fast and simple Ag+ detection method is significant. Here, a high-performance BP field effect transistor (FET) sensor is fabricated for Ag+ detection with high sensitivity, rapid detection speed, and wide detection concentration range. The detection limit for Ag+ is 10 l0 mol/L. Testing time for each sample by this method is 60 s. Besides, the mechanism of BP-FET sensor for Ag+ detection is investigated systematically. The simple BP-FET sensor may inspire some relevant research and potential applications, such as providing an effective method for the actual detection of Ag+, especially in wimessed inspections field of food.
基金Supported by the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No KJCX2-SW-W26, and the National Natural Science Foundation of China under Grant Nos 90406017 and 10427402.
文摘Metal-tip/Pr0.7Ca0.3MnO3/Pt devices possess two types of I-V hysteresis: clockwise vs counter clockwise depending on the tip materials. The criteria for categorization of these two types of devices can be simply based on whether the Gibbs free energy of oxidation for the metal tip is lower or higher than that of PCMO, respectively. While the clockwise hysteresis can be attributed to electric field induced oxidation/reduction, the counter clockwise hysteresis can be explained by oxygen vacancy migration in an electrical field. Alternating-current conductance spectra also reveal distinct hopping barriers between these two categories of devices at high resistive states.
基金Project(Z132012A001)supported by the Technical Basis Research Program in Science and Industry Bureau of ChinaProject(61201028,60876009)supported by the National Natural Science Foundation of China
文摘InGaAs high electron mobility transistors (HEMTs) on InP substrate with very good device performance have been grown by mental organic chemical vapor deposition (MOCVD). Room temperature Hall mobilities of the 2-DEG are measured to be over 8 700 cm^2/V-s with sheet carrier densities larger than 4.6× 10^12 cm^ 2. Transistors with 1.0 μm gate length exhibits transconductance up to 842 mS/ram. Excellent depletion-mode operation, with a threshold voltage of-0.3 V and IDss of 673 mA/mm, is realized. The non-alloyed ohmic contact special resistance is as low as 1.66×10^-8 Ω/cm^2, which is so far the lowest ohmic contact special resistance. The unity current gain cut off frequency (fT) and the maximum oscillation frequency (fmax) are 42.7 and 61.3 GHz, respectively. These results are very encouraging toward manufacturing InP-based HEMT by MOCVD.