Traffic flow forecasting plays a crucial role and is the key technology to realize dynamic traffic guidance and active traffic control in intelligent traffic systems(ITS).Aiming at the complex local and global spatial...Traffic flow forecasting plays a crucial role and is the key technology to realize dynamic traffic guidance and active traffic control in intelligent traffic systems(ITS).Aiming at the complex local and global spatial-temporal dynamic characteristics of traffic flow,this paper proposes a new traffic flow forecasting model spatial-temporal attention graph neural network(STA-GNN)by combining at-tention mechanism(AM)and spatial-temporal convolutional network.The model learns the hidden dynamic local spatial correlations of the traffic network by combining the dynamic adjacency matrix constructed by the graph learning layer with the graph convolutional network(GCN).The local tem-poral correlations of traffic flow at different scales are extracted by stacking multiple convolutional kernels in temporal convolutional network(TCN).And the global spatial-temporal dependencies of long-time sequences of traffic flow are captured by the spatial-temporal attention mechanism(STAtt),which enhances the global spatial-temporal modeling and the representational ability of model.The experimental results on two datasets,METR-LA and PEMS-BAY,show the proposed STA-GNN model outperforms the common baseline models in forecasting accuracy.展开更多
Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing stud...Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing studies have concentrated on developing advanced algorithms or models to attain state-of-the-art forecasting accuracy.For real-world ITS applications,the interpretability of the developed models is extremely important but has largely been ignored.This study presents an interpretable traffic flow forecasting framework based on popular tree-ensemble algorithms.The framework comprises multiple key components integrated into a highly flexible and customizable multi-stage pipeline,enabling the seamless incorporation of various algorithms and tools.To evaluate the effectiveness of the framework,the developed tree-ensemble models and another three typical categories of baseline models,including statistical time series,shallow learning,and deep learning,were compared on three datasets collected from different types of roads(i.e.,arterial,expressway,and freeway).Further,the study delves into an in-depth interpretability analysis of the most competitive tree-ensemble models using six categories of interpretable machine learning methods.Experimental results highlight the potential of the proposed framework.The tree-ensemble models developed within this framework achieve competitive accuracy while maintaining high inference efficiency similar to statistical time series and shallow learning models.Meanwhile,these tree-ensemble models offer interpretability from multiple perspectives via interpretable machine-learning techniques.The proposed framework is anticipated to provide reliable and trustworthy decision support across various ITS applications.展开更多
Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department t...Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series.展开更多
This paper intends to describe the relationship between traffic parameters by using cusp catastrophe theory and to deduce highway capacity and corresponding speed forecasting value through suitable transformation of c...This paper intends to describe the relationship between traffic parameters by using cusp catastrophe theory and to deduce highway capacity and corresponding speed forecasting value through suitable transformation of catastrophe model. The five properties of a catastrophe system are outlined briefly, and then the data collected on freeways of Zhujiang River Delta, Guangdong province, China are examined to ascertain whether they exhibit qualitative properties and attributes of the catastrophe model. The forecasting value of speed and capacity for freeway segments are given based on the catastrophe model. Furthermore, speed-flow curve on freeway is drawn by plotting out congested and uncongested traffic flow and the capacity value for the same freeway segment is also obtained from speed-flow curve to test the feasibility of the application of cusp catastrophe theory in traffic flow analysis. The calculating results of catastrophe model coincide with those of traditional traffic flow models regressed from field observed data, which indicates that the deficiency of traditional analysis of relationship between speed, flow and occupancy in two-dimension can be compensated by analysis of the relationship among speed, flow and occupancy based on catastrophe model in three-dimension. Finally, the prospects and problems of its application in traffic flow research in China are discussed.展开更多
Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting...Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting method based on a three-layer K-nearest neighbor non-parametric regression algorithm is proposed. Specifically, two screening layers based on shape similarity were introduced in K-nearest neighbor non-parametric regression method, and the forecasting results were output using the weighted averaging on the reciprocal values of the shape similarity distances and the most-similar-point distance adjustment method. According to the experimental results, the proposed algorithm has improved the predictive ability of the traditional K-nearest neighbor non-parametric regression method, and greatly enhanced the accuracy and real-time performance of short-term traffic flow forecasting.展开更多
Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive...Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive least-square(FB-KRLS)algorithm are presented for online adaptive prediction.The computational complexity of the KLMS algorithm is low and does not require additional solution paradigm constraints,but its regularization process can solve the problem of regularization performance degradation in high-dimensional data processing.To reduce the computational complexity,the sparse criterion is introduced into the KLMS algorithm.To further improve forecasting accuracy,FB-KRLS algorithm is proposed.It is an online learning method with fixed memory budget,and it is capable of recursively learning a nonlinear mapping and changing over time.In contrast to a previous approximate linear dependence(ALD)based technique,the purpose of the presented algorithm is not to prune the oldest data point in every time instant but it aims to prune the least significant data point,thus suppressing the growth of kernel matrix.In order to verify the validity of the proposed methods,they are applied to one-step and multi-step predictions of traffic flow in Beijing.Under the same conditions,they are compared with online adaptive ALD-KRLS method and other kernel learning methods.Experimental results show that the proposed KAF algorithms can improve the prediction accuracy,and its online learning ability meets the actual requirements of traffic flow and contributes to real-time online forecasting of traffic flow.展开更多
Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traf...Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting.展开更多
Traffic flow forecasting is an important part of elevator group control system (EGCS).This paper applies time series prediction theories based on neural networks(NN) to EGCSs traffic analysis,and establishes a time se...Traffic flow forecasting is an important part of elevator group control system (EGCS).This paper applies time series prediction theories based on neural networks(NN) to EGCSs traffic analysis,and establishes a time series NN traffic flow forecasting model.Simulation results show its validity.展开更多
Purpose – This paper aims to propose a medium-term forecast model for the daily passenger volume of HighSpeed Railway (HSR) systems to predict the daily the Origin-Destination (OD) daily volume formultiple consecutiv...Purpose – This paper aims to propose a medium-term forecast model for the daily passenger volume of HighSpeed Railway (HSR) systems to predict the daily the Origin-Destination (OD) daily volume formultiple consecutivedays (e.g. 120 days).Design/methodology/approach – By analyzing the characteristics of the historical data on daily passengervolume of HSR systems, the date and holiday labels were designed with determined value ranges.In accordance to the autoregressive characteristics of the daily passenger volume of HSR, the Double LayerParallel Wavelet Neural Network (DLP-WNN) model suitable for the medium-term (about 120 d) forecast of thedaily passenger volume of HSR was established. The DLP-WNN model obtains the daily forecast result byweighed summation of the daily output values of the two subnets. Subnet 1 reflects the overall trend of dailypassenger volumes in the recent period, and subnet 2 the daily fluctuation of the daily passenger volume toensure the accuracy of medium-term forecast.Findings – According to the example application, in which the DLP-WNN modelwas used for the medium-termforecast of the daily passenger volumes for 120 days for typical O-D pairs at 4 different distances, the averageabsolute percentage error is 7%-12%, obviously lower than the results measured by the Back Propagation (BP)neural network, the ELM (extreme learning machine), the ELMAN neural network, the GRNN (generalizedregression neural network) and the VMD-GA-BP. The DLP-WNN model was verified to be suitable for themedium-term forecast of the daily passenger volume of HSR.Originality/value – This study proposed a Double Layer Parallel structure forecast model for medium-termdaily passenger volume (about 120 days) of HSR systems by using the date and holiday labels and WaveletNeural Network. The predict results are important input data for supporting the line planning, scheduling andother decisions in operation and management in HSR systems.展开更多
Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning.Due to the complexity of road traffic flow d...Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning.Due to the complexity of road traffic flow data,traffic flow prediction has been one of the challenging tasks to fully exploit the spatiotemporal characteristics of roads to improve prediction accuracy.In this study,a combined flow direction level traffic flow prediction graph convolutional network(GCN)and long short-term memory(LSTM)model based on spatiotemporal characteristics is proposed.First,a GCN model is employed to capture the topological structure of the data graph and extract the spatial features of road networks.Additionally,due to the capability to handle long-term dependencies,the longterm memory is used to predict the time series of traffic flow and extract the time features.The proposed model is evaluated using real-world data,which are obtained from the intersection of Liuquan Road and Zhongrun Avenue in the Zibo High-Tech Zone of China.The results show that the developed combined GCNLSTM flow direction level traffic flow prediction model can perform better than the single models of the LSTM model and GCN model,and the combined ARIMA-LSTM model in traffic flow has a strong spatiotemporal correlation.展开更多
Transport system is a time-varying, huge and complex system. In order to have the traffic management department make pre-appropriate traffic management measures to adjust the traffic management control program, and re...Transport system is a time-varying, huge and complex system. In order to have the traffic management department make pre-appropriate traffic management measures to adjust the traffic management control program, and release travel information to travelers, to provide optimal path options to ensure that the transport system operates efficiently and safely, we have to monitor the changing of the state of road traffic and to accurately evaluate the state of the traffic, then to predict the future state of traffic. This paper represents the construction of the road traffic flow simulation including the logical structure and the physical structure, and introduces the system functions of forecasting system in Beijing.展开更多
为实现准确的机场流量短期预测,本文建立了基于二次分解方法的分解集成预测模型。首先,应用局部加权回归周期趋势分解(STL,seasonal and trend decomposition procedure based on Loess)算法将原始时间序列分解为趋势项、季节项和余项3...为实现准确的机场流量短期预测,本文建立了基于二次分解方法的分解集成预测模型。首先,应用局部加权回归周期趋势分解(STL,seasonal and trend decomposition procedure based on Loess)算法将原始时间序列分解为趋势项、季节项和余项3个分量,并计算其样本熵。其次,应用遗传算法(GA,genetic algorithm)优化变分模态分解(VMD,variational mode decomposition)参数,对熵值较大的分量进行二次分解。再次,使用极端梯度提升(XGBoost,extreme gradient boosting)对二次分解后的所有分量进行预测,采用加和集成得到最终的预测值。最后,采集国内典型机场实际运行数据进行实例分析。针对北京首都国际机场60 min进场、离场流量时序,本文模型预测的均等系数(EC,equal coefficient)值分别为0.9703、0.9959,相比其他常用模型均有所提高。此外,对于上海浦东、上海虹桥、广州白云3个大型国际机场,本文模型在60 min、30 min统计尺度下进场和离场流量预测的EC值均在0.9700以上,15 min统计尺度下预测的EC值均在0.9500以上。结果表明,本文建立的二次分解集成预测模型具有良好的准确性和普适性,用于机场流量短期预测是可行和有效的。展开更多
The ability to perform short-term traffic flow forecasting is a crucial component of intelligent transportation systems. However, accurate and reliable traffic flow forecasting is still a significant issue due to the ...The ability to perform short-term traffic flow forecasting is a crucial component of intelligent transportation systems. However, accurate and reliable traffic flow forecasting is still a significant issue due to the complexity and variability of real traffic systems. To improve the accuracy of short-term traffic flow forecasting, this paper presents a novel hybrid prediction framework based on Support Vector Regression (SVR) that uses a Random Forest (RF) to select the most informative feature subset and an enhanced Genetic Algorithm (GA) with chaotic characteristics to identify the optimal forecasting model parameters. The framework is evaluated with real-world traffic data collected from eight sensors located near the 1-605 interstate highway in California. Results show that the proposed RF- CGASVR model achieves better performance than other methods.展开更多
基金Supported by the Key R&D Program of Gansu Province(No.23YFGA0063)the National Natural Science Foundation of China(No.62363022,61663021)+1 种基金the Natural Science Foundation of Gansu Province(No.22JR5RA226,23JRRA886)the Gansu Provincial De-partment of Education:Industrial Support Plan Project(No.2023CYZC-35).
文摘Traffic flow forecasting plays a crucial role and is the key technology to realize dynamic traffic guidance and active traffic control in intelligent traffic systems(ITS).Aiming at the complex local and global spatial-temporal dynamic characteristics of traffic flow,this paper proposes a new traffic flow forecasting model spatial-temporal attention graph neural network(STA-GNN)by combining at-tention mechanism(AM)and spatial-temporal convolutional network.The model learns the hidden dynamic local spatial correlations of the traffic network by combining the dynamic adjacency matrix constructed by the graph learning layer with the graph convolutional network(GCN).The local tem-poral correlations of traffic flow at different scales are extracted by stacking multiple convolutional kernels in temporal convolutional network(TCN).And the global spatial-temporal dependencies of long-time sequences of traffic flow are captured by the spatial-temporal attention mechanism(STAtt),which enhances the global spatial-temporal modeling and the representational ability of model.The experimental results on two datasets,METR-LA and PEMS-BAY,show the proposed STA-GNN model outperforms the common baseline models in forecasting accuracy.
基金funded by the National Key R&D Program of China(Grant No.2023YFE0106800)the Humanity and Social Science Youth Foundation of Ministry of Education of China(Grant No.22YJC630109).
文摘Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing studies have concentrated on developing advanced algorithms or models to attain state-of-the-art forecasting accuracy.For real-world ITS applications,the interpretability of the developed models is extremely important but has largely been ignored.This study presents an interpretable traffic flow forecasting framework based on popular tree-ensemble algorithms.The framework comprises multiple key components integrated into a highly flexible and customizable multi-stage pipeline,enabling the seamless incorporation of various algorithms and tools.To evaluate the effectiveness of the framework,the developed tree-ensemble models and another three typical categories of baseline models,including statistical time series,shallow learning,and deep learning,were compared on three datasets collected from different types of roads(i.e.,arterial,expressway,and freeway).Further,the study delves into an in-depth interpretability analysis of the most competitive tree-ensemble models using six categories of interpretable machine learning methods.Experimental results highlight the potential of the proposed framework.The tree-ensemble models developed within this framework achieve competitive accuracy while maintaining high inference efficiency similar to statistical time series and shallow learning models.Meanwhile,these tree-ensemble models offer interpretability from multiple perspectives via interpretable machine-learning techniques.The proposed framework is anticipated to provide reliable and trustworthy decision support across various ITS applications.
基金Project(61873283)supported by the National Natural Science Foundation of ChinaProject(KQ1707017)supported by the Changsha Science&Technology Project,ChinaProject(2019CX005)supported by the Innovation Driven Project of the Central South University,China。
文摘Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series.
文摘This paper intends to describe the relationship between traffic parameters by using cusp catastrophe theory and to deduce highway capacity and corresponding speed forecasting value through suitable transformation of catastrophe model. The five properties of a catastrophe system are outlined briefly, and then the data collected on freeways of Zhujiang River Delta, Guangdong province, China are examined to ascertain whether they exhibit qualitative properties and attributes of the catastrophe model. The forecasting value of speed and capacity for freeway segments are given based on the catastrophe model. Furthermore, speed-flow curve on freeway is drawn by plotting out congested and uncongested traffic flow and the capacity value for the same freeway segment is also obtained from speed-flow curve to test the feasibility of the application of cusp catastrophe theory in traffic flow analysis. The calculating results of catastrophe model coincide with those of traditional traffic flow models regressed from field observed data, which indicates that the deficiency of traditional analysis of relationship between speed, flow and occupancy in two-dimension can be compensated by analysis of the relationship among speed, flow and occupancy based on catastrophe model in three-dimension. Finally, the prospects and problems of its application in traffic flow research in China are discussed.
文摘Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting method based on a three-layer K-nearest neighbor non-parametric regression algorithm is proposed. Specifically, two screening layers based on shape similarity were introduced in K-nearest neighbor non-parametric regression method, and the forecasting results were output using the weighted averaging on the reciprocal values of the shape similarity distances and the most-similar-point distance adjustment method. According to the experimental results, the proposed algorithm has improved the predictive ability of the traditional K-nearest neighbor non-parametric regression method, and greatly enhanced the accuracy and real-time performance of short-term traffic flow forecasting.
基金National Natural Science Foundation of China(No.51467008)
文摘Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive least-square(FB-KRLS)algorithm are presented for online adaptive prediction.The computational complexity of the KLMS algorithm is low and does not require additional solution paradigm constraints,but its regularization process can solve the problem of regularization performance degradation in high-dimensional data processing.To reduce the computational complexity,the sparse criterion is introduced into the KLMS algorithm.To further improve forecasting accuracy,FB-KRLS algorithm is proposed.It is an online learning method with fixed memory budget,and it is capable of recursively learning a nonlinear mapping and changing over time.In contrast to a previous approximate linear dependence(ALD)based technique,the purpose of the presented algorithm is not to prune the oldest data point in every time instant but it aims to prune the least significant data point,thus suppressing the growth of kernel matrix.In order to verify the validity of the proposed methods,they are applied to one-step and multi-step predictions of traffic flow in Beijing.Under the same conditions,they are compared with online adaptive ALD-KRLS method and other kernel learning methods.Experimental results show that the proposed KAF algorithms can improve the prediction accuracy,and its online learning ability meets the actual requirements of traffic flow and contributes to real-time online forecasting of traffic flow.
基金The National Natural Science Foundation of China(No.71101014,50679008)Specialized Research Fund for the Doctoral Program of Higher Education(No.200801411105)the Science and Technology Project of the Department of Communications of Henan Province(No.2010D107-4)
文摘Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting.
文摘Traffic flow forecasting is an important part of elevator group control system (EGCS).This paper applies time series prediction theories based on neural networks(NN) to EGCSs traffic analysis,and establishes a time series NN traffic flow forecasting model.Simulation results show its validity.
基金supported by the National Natural Science Foundation of China(Grant Nos.72171236 and 71701216)the National Key R&D Program of China(Grant No.2020YFB1600400)+2 种基金the China Scholarship Council(202008360277)the Key Science and Technology Research Program of the Educational Department of Jiangxi Province(Grant No.GJJ200605)the Natural Science Foundation of Hunan Province(Grant No.2020JJ5783).
文摘Purpose – This paper aims to propose a medium-term forecast model for the daily passenger volume of HighSpeed Railway (HSR) systems to predict the daily the Origin-Destination (OD) daily volume formultiple consecutivedays (e.g. 120 days).Design/methodology/approach – By analyzing the characteristics of the historical data on daily passengervolume of HSR systems, the date and holiday labels were designed with determined value ranges.In accordance to the autoregressive characteristics of the daily passenger volume of HSR, the Double LayerParallel Wavelet Neural Network (DLP-WNN) model suitable for the medium-term (about 120 d) forecast of thedaily passenger volume of HSR was established. The DLP-WNN model obtains the daily forecast result byweighed summation of the daily output values of the two subnets. Subnet 1 reflects the overall trend of dailypassenger volumes in the recent period, and subnet 2 the daily fluctuation of the daily passenger volume toensure the accuracy of medium-term forecast.Findings – According to the example application, in which the DLP-WNN modelwas used for the medium-termforecast of the daily passenger volumes for 120 days for typical O-D pairs at 4 different distances, the averageabsolute percentage error is 7%-12%, obviously lower than the results measured by the Back Propagation (BP)neural network, the ELM (extreme learning machine), the ELMAN neural network, the GRNN (generalizedregression neural network) and the VMD-GA-BP. The DLP-WNN model was verified to be suitable for themedium-term forecast of the daily passenger volume of HSR.Originality/value – This study proposed a Double Layer Parallel structure forecast model for medium-termdaily passenger volume (about 120 days) of HSR systems by using the date and holiday labels and WaveletNeural Network. The predict results are important input data for supporting the line planning, scheduling andother decisions in operation and management in HSR systems.
基金supported by the National Natural Science Foundation of China (Grant Nos.71901134&51878165)the National Science Foundation for Distinguished Young Scholars (Grant No.51925801).
文摘Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning.Due to the complexity of road traffic flow data,traffic flow prediction has been one of the challenging tasks to fully exploit the spatiotemporal characteristics of roads to improve prediction accuracy.In this study,a combined flow direction level traffic flow prediction graph convolutional network(GCN)and long short-term memory(LSTM)model based on spatiotemporal characteristics is proposed.First,a GCN model is employed to capture the topological structure of the data graph and extract the spatial features of road networks.Additionally,due to the capability to handle long-term dependencies,the longterm memory is used to predict the time series of traffic flow and extract the time features.The proposed model is evaluated using real-world data,which are obtained from the intersection of Liuquan Road and Zhongrun Avenue in the Zibo High-Tech Zone of China.The results show that the developed combined GCNLSTM flow direction level traffic flow prediction model can perform better than the single models of the LSTM model and GCN model,and the combined ARIMA-LSTM model in traffic flow has a strong spatiotemporal correlation.
基金Key Projects in Science & Technology Pillar Program in 2007 in Beijing (No.D07020601400705)
文摘Transport system is a time-varying, huge and complex system. In order to have the traffic management department make pre-appropriate traffic management measures to adjust the traffic management control program, and release travel information to travelers, to provide optimal path options to ensure that the transport system operates efficiently and safely, we have to monitor the changing of the state of road traffic and to accurately evaluate the state of the traffic, then to predict the future state of traffic. This paper represents the construction of the road traffic flow simulation including the logical structure and the physical structure, and introduces the system functions of forecasting system in Beijing.
基金supported by the Science and Technology Department of Sichuan Province of China (Nos. 2017JY0007, 2016JY0073, and 2016JZ0031)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministrythe Fundamental Research Funds for the Central Universities (No. ZYGX2015J063)
文摘The ability to perform short-term traffic flow forecasting is a crucial component of intelligent transportation systems. However, accurate and reliable traffic flow forecasting is still a significant issue due to the complexity and variability of real traffic systems. To improve the accuracy of short-term traffic flow forecasting, this paper presents a novel hybrid prediction framework based on Support Vector Regression (SVR) that uses a Random Forest (RF) to select the most informative feature subset and an enhanced Genetic Algorithm (GA) with chaotic characteristics to identify the optimal forecasting model parameters. The framework is evaluated with real-world traffic data collected from eight sensors located near the 1-605 interstate highway in California. Results show that the proposed RF- CGASVR model achieves better performance than other methods.