This study was conducted to determine the safety of bensulfuron-methyl and mefenacet in rice ecosystem. A field experiment was carried to reveal residual dynamics and final residue of bensulfuron-methyl.mefenacet 4.2 ...This study was conducted to determine the safety of bensulfuron-methyl and mefenacet in rice ecosystem. A field experiment was carried to reveal residual dynamics and final residue of bensulfuron-methyl.mefenacet 4.2 g/kg granule in rice and paddy system in Hangzhou, Changsha and Nanning of China during 2010 to 2011. The results showed that the average recoveries of bensulfuron-methyl and mefenacet spiked in the paddy soil, paddy water, rice, husk and rice plant at the 3 concentration levels of 0.05, 0.10 and 1.00 mg/kg ranged from 70.78% to 116.06% with the relative standard deviations of 0.91%-10.24%. The limit of detection (LOD) values of bensulfuron-methyl and mefenacet were 0.02 mg/L, and the minimum de- tection quantities were 4.0×10-9 g. The degradation dynamics test was done by spraying at a high dose (270 kg/hm2, bensulfuron-methyl active ingredient was 64.8 g/hm2, mefenacet active ingredient was 1 069.2 g/hm2) by direct spreading method 5-7 d after transplanting, and the final residual test carried out at a low dose (180 kg/hm2, bensuifuron-methyl active ingredient was 43.2 g/hm2, mefenacet active in- gredient was 712.8 g/hm2) and a high dose (270 kg/hm2). The degradation research of bensulfuron-methyl and mefenacet in paddy water, soil and rice plant suggested that the degradation curves accorded with the first-order kinetics equation, the aver- age half life of bensulfuron-methyl was 5.35, 3.05 and 3.71 d in water, soil and rice plant, respectively, and the average half life of mefenacet was 3.61, 3.29 and 3.88 d in water, soil and rice plant, respectively. The final residues of bensulfuron-methyl and mefenacet were not detected in normal harvest paddy soil, rice straw, husk and brown rice.展开更多
A bacterium(designated strain Y1) degrading acetanilide herbicide mefenacet was isolated from aerobic sludge. Based on the analyses of partial 16S rRNA gene, cellular fatty acid and BIOLOG-GN, and general physiologica...A bacterium(designated strain Y1) degrading acetanilide herbicide mefenacet was isolated from aerobic sludge. Based on the analyses of partial 16S rRNA gene, cellular fatty acid and BIOLOG-GN, and general physiological and biochemical characteristics, strain Y1 was identified as Sphingobacterium multivolum. Strain Y1 was able to degrade mefenacet used as sources of carbon and energy. Degradation of mefenacet was accompanied by producing the metabolites N-methylaniline and an unidentified compound with molecular weight 205, indicating a metabolic pathway of mefenacet initiated by hydrolysis of amido bond.展开更多
The effect of acetanilide herbicide mefenacet on soil microbial communities was studied using paddy soil samples with different short-term treatments. The culturable bacteria (plate counts), dehydrogenase activity a...The effect of acetanilide herbicide mefenacet on soil microbial communities was studied using paddy soil samples with different short-term treatments. The culturable bacteria (plate counts), dehydrogenase activity and changes in community structure (denaturing gradient gel electrophoresis (DGGE) analysis) were used for biological community assessments. Mefenacet was a significant stimulus to cultural aerobic bacteria and dehydrogenase activity while Sphingobacterium multivorum Y1, a bacterium efficiently degrading the mefenacet, only induced the increasing colony-forming unit (CFU) of bacteria but little effect on dehydrogenase activity during the whole experiment. The degree of similarity between the 16S rDNA profiles of the communities was quantified by numerically analyzing the DGGE band patterns. Similarity dendrograms showed that the microbial community structures of the mefenacet-treated and non-treated soils were not significantly different. But supplement of S. multivorum Y1 could increase the diversity of the microbial community in the mefenacet-polluted paddy soil. This work is a new attempt to apply the S. multivorum Y1 for remediation of the mefenacet-polluted environments.展开更多
基金Supported Nanning Major Scientific and Technological Project of New Patented Product Industrialization(201106055D)Agrochemical Residual Test Project of Ministry of China(2010H216)Youth Science Foundation of Hunan Agricultural University(15QN30)~~
文摘This study was conducted to determine the safety of bensulfuron-methyl and mefenacet in rice ecosystem. A field experiment was carried to reveal residual dynamics and final residue of bensulfuron-methyl.mefenacet 4.2 g/kg granule in rice and paddy system in Hangzhou, Changsha and Nanning of China during 2010 to 2011. The results showed that the average recoveries of bensulfuron-methyl and mefenacet spiked in the paddy soil, paddy water, rice, husk and rice plant at the 3 concentration levels of 0.05, 0.10 and 1.00 mg/kg ranged from 70.78% to 116.06% with the relative standard deviations of 0.91%-10.24%. The limit of detection (LOD) values of bensulfuron-methyl and mefenacet were 0.02 mg/L, and the minimum de- tection quantities were 4.0×10-9 g. The degradation dynamics test was done by spraying at a high dose (270 kg/hm2, bensulfuron-methyl active ingredient was 64.8 g/hm2, mefenacet active ingredient was 1 069.2 g/hm2) by direct spreading method 5-7 d after transplanting, and the final residual test carried out at a low dose (180 kg/hm2, bensuifuron-methyl active ingredient was 43.2 g/hm2, mefenacet active in- gredient was 712.8 g/hm2) and a high dose (270 kg/hm2). The degradation research of bensulfuron-methyl and mefenacet in paddy water, soil and rice plant suggested that the degradation curves accorded with the first-order kinetics equation, the aver- age half life of bensulfuron-methyl was 5.35, 3.05 and 3.71 d in water, soil and rice plant, respectively, and the average half life of mefenacet was 3.61, 3.29 and 3.88 d in water, soil and rice plant, respectively. The final residues of bensulfuron-methyl and mefenacet were not detected in normal harvest paddy soil, rice straw, husk and brown rice.
文摘A bacterium(designated strain Y1) degrading acetanilide herbicide mefenacet was isolated from aerobic sludge. Based on the analyses of partial 16S rRNA gene, cellular fatty acid and BIOLOG-GN, and general physiological and biochemical characteristics, strain Y1 was identified as Sphingobacterium multivolum. Strain Y1 was able to degrade mefenacet used as sources of carbon and energy. Degradation of mefenacet was accompanied by producing the metabolites N-methylaniline and an unidentified compound with molecular weight 205, indicating a metabolic pathway of mefenacet initiated by hydrolysis of amido bond.
文摘The effect of acetanilide herbicide mefenacet on soil microbial communities was studied using paddy soil samples with different short-term treatments. The culturable bacteria (plate counts), dehydrogenase activity and changes in community structure (denaturing gradient gel electrophoresis (DGGE) analysis) were used for biological community assessments. Mefenacet was a significant stimulus to cultural aerobic bacteria and dehydrogenase activity while Sphingobacterium multivorum Y1, a bacterium efficiently degrading the mefenacet, only induced the increasing colony-forming unit (CFU) of bacteria but little effect on dehydrogenase activity during the whole experiment. The degree of similarity between the 16S rDNA profiles of the communities was quantified by numerically analyzing the DGGE band patterns. Similarity dendrograms showed that the microbial community structures of the mefenacet-treated and non-treated soils were not significantly different. But supplement of S. multivorum Y1 could increase the diversity of the microbial community in the mefenacet-polluted paddy soil. This work is a new attempt to apply the S. multivorum Y1 for remediation of the mefenacet-polluted environments.