A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State K...A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State Key Laboratory for Disaster Reduction in Civil Engineering in Tongji, China. Two types of earthquake records, El-Centro wave (south-north direction) and Shanghai artificial wave (SHAW) with various peak accelerations and principal-secondary sequences, were input and experimentally studied. Based on the shaking table tests and theoretical analysis, several observations can be made. The failure sequence of the model structure is brace→beam→column→joints, so that the design philosophy for several lines of defense has been achieved. Earthquake waves with different spectrums not only influence the magnitude and distribution of the earthquake force and the storey shear force, but also obviously affect the magnitude of the displacement response. The aftershock seismic response of previously damaged reinforced concrete braced frames with irregular columns possesses the equivalent elastic performance characteristic. Generally speaking, from the aspects of failure features and drift ratio, this type of reinforced concrete structure provides adequate earthquake resistance and can be promoted for use in China.展开更多
This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete comp...This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete composite brace, is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation. Together with a contribution from the GFRP-tube confined concrete, the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting. An analysis model is established and implemented in a general finite element analysis program - OpenSees, for simulating the load-displacement behavior of the composite brace. Using this model, a parametric study of the hysteretic behavior (energy dissipation, stiffness, ductility and strength) of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered. To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete (RC) frame structure was retrofitted with the composite braces. Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records. The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand.展开更多
The present work discusses the outcomes of recent experimental tests and numerical simulations carried out on full scale reinforced concrete (RC) non-ductile frames retrofitted with dissipative steel braces, i.e. in...The present work discusses the outcomes of recent experimental tests and numerical simulations carried out on full scale reinforced concrete (RC) non-ductile frames retrofitted with dissipative steel braces, i.e. innovative buckling restrained braces (BRBs). Experimental tests were performed on two sample full scale RC framed buildings designed for gravity loads only. Such frames were subjected to cyclic pushovers to investigate their structural performance under different levels of earthquake loadings. The outcomes of the performed experimental tests demonstrate the efficiency and reliability of utilizing BRBs to retrofit non ductile RC frames. These outcomes were confirmed by refined non linear static and response history analyses carried out on an existing RC school framed building designed without seismic details and retrofitted with BRBs similar to those adopted for the tested full-scale frame. In such sample building the BRBs are placed along the perimeter of the existing frames to minimize the interruption of the functionality of the school and for easy of maintenance in the aftermath of major earthquake ground motions. The seismic performance assessment of the retrofitted structural system is illustrated in a detailed manner. Local and global response quantities are presented. The values of the global overstrength Ω for the case study vary between 2.14 and 2.54 for the retrofitted framed building. The translation ductility μ△-values range between 2.07 and 2.36. The response modification factor (or behaviour factor, namely R- or q-factor) is on average equal to 5.0. Additionally, the estimated maximum axial ductility of the BRBs is about 10. Finally, the cost-effectiveness of the adopted retrofitting scheme is emphasized and further needs for the application of BRBs are highlighted.展开更多
文摘A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State Key Laboratory for Disaster Reduction in Civil Engineering in Tongji, China. Two types of earthquake records, El-Centro wave (south-north direction) and Shanghai artificial wave (SHAW) with various peak accelerations and principal-secondary sequences, were input and experimentally studied. Based on the shaking table tests and theoretical analysis, several observations can be made. The failure sequence of the model structure is brace→beam→column→joints, so that the design philosophy for several lines of defense has been achieved. Earthquake waves with different spectrums not only influence the magnitude and distribution of the earthquake force and the storey shear force, but also obviously affect the magnitude of the displacement response. The aftershock seismic response of previously damaged reinforced concrete braced frames with irregular columns possesses the equivalent elastic performance characteristic. Generally speaking, from the aspects of failure features and drift ratio, this type of reinforced concrete structure provides adequate earthquake resistance and can be promoted for use in China.
文摘This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete composite brace, is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation. Together with a contribution from the GFRP-tube confined concrete, the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting. An analysis model is established and implemented in a general finite element analysis program - OpenSees, for simulating the load-displacement behavior of the composite brace. Using this model, a parametric study of the hysteretic behavior (energy dissipation, stiffness, ductility and strength) of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered. To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete (RC) frame structure was retrofitted with the composite braces. Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records. The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand.
文摘The present work discusses the outcomes of recent experimental tests and numerical simulations carried out on full scale reinforced concrete (RC) non-ductile frames retrofitted with dissipative steel braces, i.e. innovative buckling restrained braces (BRBs). Experimental tests were performed on two sample full scale RC framed buildings designed for gravity loads only. Such frames were subjected to cyclic pushovers to investigate their structural performance under different levels of earthquake loadings. The outcomes of the performed experimental tests demonstrate the efficiency and reliability of utilizing BRBs to retrofit non ductile RC frames. These outcomes were confirmed by refined non linear static and response history analyses carried out on an existing RC school framed building designed without seismic details and retrofitted with BRBs similar to those adopted for the tested full-scale frame. In such sample building the BRBs are placed along the perimeter of the existing frames to minimize the interruption of the functionality of the school and for easy of maintenance in the aftermath of major earthquake ground motions. The seismic performance assessment of the retrofitted structural system is illustrated in a detailed manner. Local and global response quantities are presented. The values of the global overstrength Ω for the case study vary between 2.14 and 2.54 for the retrofitted framed building. The translation ductility μ△-values range between 2.07 and 2.36. The response modification factor (or behaviour factor, namely R- or q-factor) is on average equal to 5.0. Additionally, the estimated maximum axial ductility of the BRBs is about 10. Finally, the cost-effectiveness of the adopted retrofitting scheme is emphasized and further needs for the application of BRBs are highlighted.