Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However...Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance.展开更多
The success of catalytic schemes for the large-scale valorization of CO_(2) does not only depend on the development of active,selective and stable catalytic materials but also on the overall process design.Here we pre...The success of catalytic schemes for the large-scale valorization of CO_(2) does not only depend on the development of active,selective and stable catalytic materials but also on the overall process design.Here we present a multidisciplinary study(from catalyst to plant and techno-economic/lifecycle analysis)for the production of green methanol from renewable H2 and CO_(2).We combine an in-depth kinetic analysis of one of the most promising recently reported methanol-synthesis catalysts(InCo)with a thorough process simulation and techno-economic assessment.We then perform a life cycle assessment of the simulated process to gauge the real environmental impact of green methanol production from CO_(2).Our results indicate that up to 1.75 ton of CO_(2) can be abated per ton of produced methanol only if renewable energy is used to run the process,while the sensitivity analysis suggest that either rock-bottom H2 prices(1.5$kg1)or severe CO_(2) taxation(300$per ton)are needed for a profitable methanol plant.Besides,we herein highlight and analyze some critical bottlenecks of the process.Especial attention has been paid to the contribution of H2 to the overall plant costs,CH4 trace formation,and purity and costs of raw gases.In addition to providing important information for policy makers and industrialists,directions for catalyst(and therefore process)improvements are outlined.展开更多
PtRuIn/C electrocatalysts( 20% metal loading by weight) were prepared by sodium borohydride reduction process using H_2PtCl6·6H_2O,RuCl_3·xH_2O and InCl_3·xH_2O as metal sources,borohydride as reducing ...PtRuIn/C electrocatalysts( 20% metal loading by weight) were prepared by sodium borohydride reduction process using H_2PtCl6·6H_2O,RuCl_3·xH_2O and InCl_3·xH_2O as metal sources,borohydride as reducing agent and Carbon Vulcan XC72 as support. The synthetized PtRuIn/C electrocatalysts were characterized by X-ray diffraction( XRD),energy dispersive analysis( EDX),transmission electron microscopy( TEM),cyclic voltammetry( CV),chronoamperommetry( CA) and polarization curves in alkaline and acidic electrolytes( single cell experiments). The XRD patterns showPtpeaks are attributed to the face-centered cubic( fcc) structure,and a shift of Pt( fcc) peaks indicates that Ru or In is incorporated into Ptlattice. TEMmicrographs showmetal nanoparticles with an average nanoparticle size between 2.7 and 3.5 nm. Methanol oxidation in acidic and alkaline electrolytes was investigated at room temperature,by CV and CA. PtRu/C( 50 ∶ 50) shows the highest activity among all electrocatalysts in study considering methanol oxidation for acidic and alkaline electrolyte. Polarization curves at 80 ℃ showPtRuIn/C( 50 ∶ 25 ∶ 25)with superior performance for methanol oxidation,when compared to Pt/C,PtIn/C and PtRu/C for both electrolytes. The best performance obtained by PtRuIn/C( 50 ∶ 25 ∶ 25) in real conditions could be associated with the increased kinetics reaction and/or with the occurrence simultaneously of the bifunctional mechanism and electronic effect resulting from the presence of Ptalloy.展开更多
Methanol to olefin(MTO)technology provides the opportunity to produce olefins from nonpetroleum sources such as coal,biomass and natural gas.More than 20 commercial MTO plants have been put into operation.Till now,con...Methanol to olefin(MTO)technology provides the opportunity to produce olefins from nonpetroleum sources such as coal,biomass and natural gas.More than 20 commercial MTO plants have been put into operation.Till now,contributions on optimal operation of industrial MTO plants from a process systems engineering perspective are rare.Based on relevance vector machine(RVM),a data-driven framework for optimal operation of the industrial MTO process is established to fully utilize the plentiful industrial data sets.RVM correlates the yield distribution prediction of main products and the operation conditions.These correlations then serve as the constraints for the multi-objective optimization model to pursue the optimal operation of the plant.Nondominated sorting genetic algorithmⅡis used to solve the optimization problem.Comprehensive tests demonstrate that the ethylene yield is effectively improved based on the proposed framework.Since RVM does provide the distribution prediction instead of point estimation,the established model is expected to provide guidance for actual production operations under uncertainty.展开更多
In the coke oven gas to methanol(CTM) process, boiling water(above 200 ℃) is generally used as the coolant in the methanol synthesis reactor, and thus, medium-pressure steam is generated as a by-product. In this pape...In the coke oven gas to methanol(CTM) process, boiling water(above 200 ℃) is generally used as the coolant in the methanol synthesis reactor, and thus, medium-pressure steam is generated as a by-product. In this paper, the influence of the coolant temperature on the CTM process is investigated from two aspects, which are the performance analyses of the reactor and the overall process and the energy integration of by-product steam. The results reveal that the coolant temperature plays a key role in the CTM process optimization. When the coolant temperature is reduced to 187 ℃, though low-pressure steam is generated, the techno-economic performance of the whole process is greatly improved: the energy/exergy efficiency is increased by 4-9%, energy cost is saved by 37.1%, income is increased by 5.4 M$/year, and the C02 emission is reduced by 21.3%.展开更多
A kinetic model of MTO process over the SAPO-34 catalyst considering the effect of water and coke deposition has been proposed.The model takes into account three steps of the MTO reaction in which the products cover 5...A kinetic model of MTO process over the SAPO-34 catalyst considering the effect of water and coke deposition has been proposed.The model takes into account three steps of the MTO reaction in which the products cover 5 lumped components.The water in the feed not only reduces the concentration of methanol but also alleviates the deactivation of SAPO-34 catalyst.The kinetic parameters have been estimated by the least square method.It has been proved that the calculated values in the kinetic model are in good agreement with the experimental values.展开更多
A process of "Methanol or Dimethylether to Olefins" developed by Dalian Institute of Chemical Physics (DICP), designated as the DMTO process, has attained great success in industrial scaling up testing. DICP, by c...A process of "Methanol or Dimethylether to Olefins" developed by Dalian Institute of Chemical Physics (DICP), designated as the DMTO process, has attained great success in industrial scaling up testing. DICP, by collaborating with the Xinxing Coal Chemical Co., Ltd. of Shaanxi Province and the Luoyang Petrochemical Engineering Co. of the SINOPEC Group, operated successfully a 50t(methanol)/d unit for the conversion of methanol to lower olefins, with a methanol conversion of close to 100%, and a selectivity to lower olefins(ethylene, propylene and butylenes) of higher than 90%. On 23rd August, the industrial test project has passed a state appraisal. The experts of the Appraisal Group, headed by Prof. YUAN Qingtang, academician of Chinese Academy of Engineering, drew the conclusions that the DMTO process, by utilizing a proprietary SAPO-34 catalyst system and a recycling fluidized bed reaction system for the production of lower olefins from methanol, is the first unit in the world having a capacity of producing nearly ten thousand tons lower olefins per year. The technological level of the industrial test is at a leading position internationally. This accomplishment will provide a sound base for the subsequent commercialization of the DMTO process.展开更多
The two-stage and two-phase anaerobic process (TSTP) composed of hydrolytic acidification reactor,first-order and second-order external circulation anaerobic reactors (EC) was taken to treat methanol wastewater. Test ...The two-stage and two-phase anaerobic process (TSTP) composed of hydrolytic acidification reactor,first-order and second-order external circulation anaerobic reactors (EC) was taken to treat methanol wastewater. Test results show that TSTP process is quick start-up in 51 d, and the maximum VFA of hydrolytic acidification reactor effluent reaches 876 mg/L. Under the condition of volume loading of 6.56 kgCOD/m3·d, COD removal rate of the first-order EC reactor is about 85%, and under the condition of volume loading of 1.02 kgCOD/m3·d, COD removal rate of the second-order EC reactor is about 50%. When the inflow COD of TSTP process is between 7000-11000 mg/L, its effluent COD is lower than 600 mg/L. In the biological conversion process of methanol into methane,the production of acetic acids as an intermediate product can be ignored and the direct production of methane from methanol is predominant.展开更多
为了对柴油机的经济性和排放参数进行高效、准确的预测,根据4190型船用柴油机实验数据与边界参数,建立AVL-BOOST甲醇/柴油混合燃料柴油机仿真模型;利用模型进行仿真实验,并建立甲醇掺混比、废气再循环(exhaust gas recirculation,EGR)...为了对柴油机的经济性和排放参数进行高效、准确的预测,根据4190型船用柴油机实验数据与边界参数,建立AVL-BOOST甲醇/柴油混合燃料柴油机仿真模型;利用模型进行仿真实验,并建立甲醇掺混比、废气再循环(exhaust gas recirculation,EGR)率、喷油提前角和进气压力4个控制参数对有效油耗率和NO x排放预测数据集;利用该数据集对5种不同核函数的高斯过程回归(Gaussian process regression,GPR)模型进行训练;最后将最优的平方指数高斯过程回归(squared exponential-Gaussian process regression,SE-GPR)模型、AVL-BOOST仿真数据和柴油机实验数据进行对比。结果表明:在数据量为180组时,SE-GPR模型对有效油耗率和NO x排放均取得拟合关联度99%以上,均方根误差(root mean square error,RMSE)分别为1.859,0.3445,平均绝对误差(mean absolute error,MAE)分别为0.954,0.2489;并且,相较于AVL-BOOST仿真实验,SE-GPR模型对实验数据具有更好的拟合性。展开更多
文章模拟了CO_(2)与绿氢合成甲醇的过程,提出了CO_(2)储能密度指标,研究了多个参数对甲醇储能性能的影响。研究结果表明:系统能效和甲醇能量产率随着电解水效率、单程CO_(2)转化率、电解水压力和CO_(2)初始压力的升高而升高,随着甲醇合...文章模拟了CO_(2)与绿氢合成甲醇的过程,提出了CO_(2)储能密度指标,研究了多个参数对甲醇储能性能的影响。研究结果表明:系统能效和甲醇能量产率随着电解水效率、单程CO_(2)转化率、电解水压力和CO_(2)初始压力的升高而升高,随着甲醇合成压力的升高而降低;CO_(2)储能密度随以上参数的变化趋势与系统能效和甲醇能量产率相反;电解水效率和单程CO_(2)转化率是敏感关键的参数;在最优组合工况下,基于甲醇高位和低位热值的系统能效分别为68.0%和59.6%,CO_(2)储能密度为6.07 k W·h/kg,能量产率为0.108 kg/(k W·h),表明以CO_(2)为原料的电制甲醇的系统能效不够理想,但储能密度优势显著。展开更多
基金the financial support from the Strategic Priority Research Program of Chinese Academy of Sciences(XDA21010100)。
文摘Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance.
基金support from the King Abdullah University of Science and Technology(KAUST).T.Cordero-Lanzac and A.T.Aguayo acknowledge the financial support received from the Spanish Ministry of Science and Innovation with some ERDF funds(CTQ2016-77812-R)the Basque Government(IT1218-19)+2 种基金T.Cordero-Lanzac also acknowledges the Spanish Ministry of Education,Culture and Sport for the award of his FPU grant(FPU15-01666)A.Navajas and L.M.Gandía gratefully acknowledge the financial support from Spanish Ministerio de Ciencia,Innovación y Universidades,and the European Regional Development Fund(ERDF/FEDER)(grant RTI2018-096294-B-C31)L.M.Gandía also thanks Banco de Santander and Universidad Pública de Navarra for their financial support under“Programa de Intensificación de la Investigación 2018”initiative.
文摘The success of catalytic schemes for the large-scale valorization of CO_(2) does not only depend on the development of active,selective and stable catalytic materials but also on the overall process design.Here we present a multidisciplinary study(from catalyst to plant and techno-economic/lifecycle analysis)for the production of green methanol from renewable H2 and CO_(2).We combine an in-depth kinetic analysis of one of the most promising recently reported methanol-synthesis catalysts(InCo)with a thorough process simulation and techno-economic assessment.We then perform a life cycle assessment of the simulated process to gauge the real environmental impact of green methanol production from CO_(2).Our results indicate that up to 1.75 ton of CO_(2) can be abated per ton of produced methanol only if renewable energy is used to run the process,while the sensitivity analysis suggest that either rock-bottom H2 prices(1.5$kg1)or severe CO_(2) taxation(300$per ton)are needed for a profitable methanol plant.Besides,we herein highlight and analyze some critical bottlenecks of the process.Especial attention has been paid to the contribution of H2 to the overall plant costs,CH4 trace formation,and purity and costs of raw gases.In addition to providing important information for policy makers and industrialists,directions for catalyst(and therefore process)improvements are outlined.
文摘PtRuIn/C electrocatalysts( 20% metal loading by weight) were prepared by sodium borohydride reduction process using H_2PtCl6·6H_2O,RuCl_3·xH_2O and InCl_3·xH_2O as metal sources,borohydride as reducing agent and Carbon Vulcan XC72 as support. The synthetized PtRuIn/C electrocatalysts were characterized by X-ray diffraction( XRD),energy dispersive analysis( EDX),transmission electron microscopy( TEM),cyclic voltammetry( CV),chronoamperommetry( CA) and polarization curves in alkaline and acidic electrolytes( single cell experiments). The XRD patterns showPtpeaks are attributed to the face-centered cubic( fcc) structure,and a shift of Pt( fcc) peaks indicates that Ru or In is incorporated into Ptlattice. TEMmicrographs showmetal nanoparticles with an average nanoparticle size between 2.7 and 3.5 nm. Methanol oxidation in acidic and alkaline electrolytes was investigated at room temperature,by CV and CA. PtRu/C( 50 ∶ 50) shows the highest activity among all electrocatalysts in study considering methanol oxidation for acidic and alkaline electrolyte. Polarization curves at 80 ℃ showPtRuIn/C( 50 ∶ 25 ∶ 25)with superior performance for methanol oxidation,when compared to Pt/C,PtIn/C and PtRu/C for both electrolytes. The best performance obtained by PtRuIn/C( 50 ∶ 25 ∶ 25) in real conditions could be associated with the increased kinetics reaction and/or with the occurrence simultaneously of the bifunctional mechanism and electronic effect resulting from the presence of Ptalloy.
基金financial support for this work from National Natural Science Foundation of China(21978150,21706143)。
文摘Methanol to olefin(MTO)technology provides the opportunity to produce olefins from nonpetroleum sources such as coal,biomass and natural gas.More than 20 commercial MTO plants have been put into operation.Till now,contributions on optimal operation of industrial MTO plants from a process systems engineering perspective are rare.Based on relevance vector machine(RVM),a data-driven framework for optimal operation of the industrial MTO process is established to fully utilize the plentiful industrial data sets.RVM correlates the yield distribution prediction of main products and the operation conditions.These correlations then serve as the constraints for the multi-objective optimization model to pursue the optimal operation of the plant.Nondominated sorting genetic algorithmⅡis used to solve the optimization problem.Comprehensive tests demonstrate that the ethylene yield is effectively improved based on the proposed framework.Since RVM does provide the distribution prediction instead of point estimation,the established model is expected to provide guidance for actual production operations under uncertainty.
文摘In the coke oven gas to methanol(CTM) process, boiling water(above 200 ℃) is generally used as the coolant in the methanol synthesis reactor, and thus, medium-pressure steam is generated as a by-product. In this paper, the influence of the coolant temperature on the CTM process is investigated from two aspects, which are the performance analyses of the reactor and the overall process and the energy integration of by-product steam. The results reveal that the coolant temperature plays a key role in the CTM process optimization. When the coolant temperature is reduced to 187 ℃, though low-pressure steam is generated, the techno-economic performance of the whole process is greatly improved: the energy/exergy efficiency is increased by 4-9%, energy cost is saved by 37.1%, income is increased by 5.4 M$/year, and the C02 emission is reduced by 21.3%.
文摘A kinetic model of MTO process over the SAPO-34 catalyst considering the effect of water and coke deposition has been proposed.The model takes into account three steps of the MTO reaction in which the products cover 5 lumped components.The water in the feed not only reduces the concentration of methanol but also alleviates the deactivation of SAPO-34 catalyst.The kinetic parameters have been estimated by the least square method.It has been proved that the calculated values in the kinetic model are in good agreement with the experimental values.
文摘A process of "Methanol or Dimethylether to Olefins" developed by Dalian Institute of Chemical Physics (DICP), designated as the DMTO process, has attained great success in industrial scaling up testing. DICP, by collaborating with the Xinxing Coal Chemical Co., Ltd. of Shaanxi Province and the Luoyang Petrochemical Engineering Co. of the SINOPEC Group, operated successfully a 50t(methanol)/d unit for the conversion of methanol to lower olefins, with a methanol conversion of close to 100%, and a selectivity to lower olefins(ethylene, propylene and butylenes) of higher than 90%. On 23rd August, the industrial test project has passed a state appraisal. The experts of the Appraisal Group, headed by Prof. YUAN Qingtang, academician of Chinese Academy of Engineering, drew the conclusions that the DMTO process, by utilizing a proprietary SAPO-34 catalyst system and a recycling fluidized bed reaction system for the production of lower olefins from methanol, is the first unit in the world having a capacity of producing nearly ten thousand tons lower olefins per year. The technological level of the industrial test is at a leading position internationally. This accomplishment will provide a sound base for the subsequent commercialization of the DMTO process.
基金Sponsored by the National Hi-Tech Research and Development Program of China (Grant No.2003AA601090)Projects of Development Plan of the State Key Fundamental Research of China (Grant No.2004CB4185)
文摘The two-stage and two-phase anaerobic process (TSTP) composed of hydrolytic acidification reactor,first-order and second-order external circulation anaerobic reactors (EC) was taken to treat methanol wastewater. Test results show that TSTP process is quick start-up in 51 d, and the maximum VFA of hydrolytic acidification reactor effluent reaches 876 mg/L. Under the condition of volume loading of 6.56 kgCOD/m3·d, COD removal rate of the first-order EC reactor is about 85%, and under the condition of volume loading of 1.02 kgCOD/m3·d, COD removal rate of the second-order EC reactor is about 50%. When the inflow COD of TSTP process is between 7000-11000 mg/L, its effluent COD is lower than 600 mg/L. In the biological conversion process of methanol into methane,the production of acetic acids as an intermediate product can be ignored and the direct production of methane from methanol is predominant.
文摘为了对柴油机的经济性和排放参数进行高效、准确的预测,根据4190型船用柴油机实验数据与边界参数,建立AVL-BOOST甲醇/柴油混合燃料柴油机仿真模型;利用模型进行仿真实验,并建立甲醇掺混比、废气再循环(exhaust gas recirculation,EGR)率、喷油提前角和进气压力4个控制参数对有效油耗率和NO x排放预测数据集;利用该数据集对5种不同核函数的高斯过程回归(Gaussian process regression,GPR)模型进行训练;最后将最优的平方指数高斯过程回归(squared exponential-Gaussian process regression,SE-GPR)模型、AVL-BOOST仿真数据和柴油机实验数据进行对比。结果表明:在数据量为180组时,SE-GPR模型对有效油耗率和NO x排放均取得拟合关联度99%以上,均方根误差(root mean square error,RMSE)分别为1.859,0.3445,平均绝对误差(mean absolute error,MAE)分别为0.954,0.2489;并且,相较于AVL-BOOST仿真实验,SE-GPR模型对实验数据具有更好的拟合性。
文摘文章模拟了CO_(2)与绿氢合成甲醇的过程,提出了CO_(2)储能密度指标,研究了多个参数对甲醇储能性能的影响。研究结果表明:系统能效和甲醇能量产率随着电解水效率、单程CO_(2)转化率、电解水压力和CO_(2)初始压力的升高而升高,随着甲醇合成压力的升高而降低;CO_(2)储能密度随以上参数的变化趋势与系统能效和甲醇能量产率相反;电解水效率和单程CO_(2)转化率是敏感关键的参数;在最优组合工况下,基于甲醇高位和低位热值的系统能效分别为68.0%和59.6%,CO_(2)储能密度为6.07 k W·h/kg,能量产率为0.108 kg/(k W·h),表明以CO_(2)为原料的电制甲醇的系统能效不够理想,但储能密度优势显著。