In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of sate...In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of satellites necessitate the use of edge computing to enhance secure communication.While edge computing reduces the burden on cloud computing, it introduces security and reliability challenges in open satellite communication channels. To address these challenges, we propose a blockchain architecture specifically designed for edge computing in mega-constellation communication systems. This architecture narrows down the consensus scope of the blockchain to meet the requirements of edge computing while ensuring comprehensive log storage across the network. Additionally, we introduce a reputation management mechanism for nodes within the blockchain, evaluating their trustworthiness, workload, and efficiency. Nodes with higher reputation scores are selected to participate in tasks and are appropriately incentivized. Simulation results demonstrate that our approach achieves a task result reliability of 95% while improving computational speed.展开更多
With the development of the transportation industry, the effective guidance of aircraft in an emergency to prevent catastrophic accidents remains one of the top safety concerns. Undoubtedly, operational status data of...With the development of the transportation industry, the effective guidance of aircraft in an emergency to prevent catastrophic accidents remains one of the top safety concerns. Undoubtedly, operational status data of the aircraft play an important role in the judgment and command of the Operational Control Center(OCC). However, how to transmit various operational status data from abnormal aircraft back to the OCC in an emergency is still an open problem. In this paper, we propose a novel Telemetry, Tracking,and Command(TT&C) architecture named Collaborative TT&C(CoTT&C) based on mega-constellation to solve such a problem. CoTT&C allows each satellite to help the abnormal aircraft by sharing TT&C resources when needed, realizing real-time and reliable aeronautical communication in an emergency. Specifically, we design a dynamic resource sharing mechanism for CoTT&C and model the mechanism as a single-leader-multi-follower Stackelberg game. Further, we give an unique Nash Equilibrium(NE) of the game as a closed form. Simulation results demonstrate that the proposed resource sharing mechanism is effective, incentive compatible, fair, and reciprocal. We hope that our findings can shed some light for future research on aeronautical communications in an emergency.展开更多
Emerging long-range industrial IoT applications(e.g.,remote patient monitoring)have increasingly higher requirements for global deterministic delay.Although many existing methods have built deterministic networks in s...Emerging long-range industrial IoT applications(e.g.,remote patient monitoring)have increasingly higher requirements for global deterministic delay.Although many existing methods have built deterministic networks in small-scale networks through centralized computing and resource reservation,they cannot be applied on a global scale.The emerging mega-constellations enable new opportunities for realizing deterministic delay globally.As one constellation(e.g.,Starlink)might be managed by a single operator(e.g.,SpaceX),packets can be routed within deterministic number of hops.Moreover,the path diversity brought by the highly symmetrical network structure in mega-constellations can help to construct a congestion free network by routing.This paper leverages these unique characteristics of mega-constellations to avoid the traditional network congestion caused by multiple inputs and single output,and to determine the routing hops,and thus realizing a global deterministic network(DETSPACE).The model based on the 2D Markov chain theoretically verifies the correctness of DETSPACE.The effectiveness of DETSPACE in different traffic load con-ditions is also verified by extensive simulations.展开更多
Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In exist...Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.展开更多
In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the ...In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the developing megaconstellations in low-Earth orbit,this paper proposes a relay tracking mode to track HGVs to overcome the above problem.The whole tracking mission is composed of several tracking intervals with the same duration.Within each tracking interval,several appropriate satellites are dispatched to track the HGV.Satellites that are planned to take part in the tracking mission are selected by a new derived observability criterion.The tracking performances of the proposed tracking mode and the other two traditional tracking modes,including the stare and track-rate modes,are compared by simulation.The results show that the relay tracking mode can track the whole trajectory of a HGV,while the stare mode can only provide a very short tracking arc.Moreover,the relay tracking mode achieve higher tracking accuracy with fewer attitude controls than the track-rate mode.展开更多
Low earth orbit(LEO)mega-constellations can provide global low-latency high bandwidth coverage compared to the terrestrial network.The time-varying topology of satellite networks and the uneven traffic distribution le...Low earth orbit(LEO)mega-constellations can provide global low-latency high bandwidth coverage compared to the terrestrial network.The time-varying topology of satellite networks and the uneven traffic distribution lead to the mismatch between satellites and users,resulting in the waste of satellite resources and the degradation of user performance.Through negotiation with neighbors,the traditional terrestrial cell breathing continuously converges to the optimal cell size in the face of user tides,but this method is difficult to converge timely when facing rapid and extreme flow changes caused by the rapid movement of satellites.This paper presents a fast adaptive cell breathing scheme(Fa B)through sub-block division and satellite cell initialization and adjustment.Fa B divides the ground into sub-blocks according to the user density.When the satellite moves in the same sub-block,the step size of breathing is adjusted according to the cell size difference between the previous satellite and the current satellite.When the satellite switches between different sub-blocks,the initial value of the cell is determined according to the density of the new sub-block.In addition to negotiating with neighboring satellites,this scheme also introduces location information to directly adjust the parameters of cell breathing and decrease the time of cell breathing convergence.From the real constellation data-driven simulation,we conclude that Fa B can quickly adjust the size of the cell with the location changing,and the utilization rate is increased by 2.66 times compared to the method with no cell breathing,and by2.37 times compared to the method with cell breathing without location information.展开更多
The mega-constellation network has gained significant attention recently due to its great potential in providing ubiquitous and high-capacity connectivity in sixth-generation(6G)wireless communication systems.However,...The mega-constellation network has gained significant attention recently due to its great potential in providing ubiquitous and high-capacity connectivity in sixth-generation(6G)wireless communication systems.However,the high dynamics of network topology and large scale of mega-constellation pose new challenges to the constellation simulation and performance evaluation.In this paper,we introduce UltraStar,a lightweight network simulator,which aims to facilitate the complicated simulation for the emerging mega-constellation of unprecedented scale.Particularly,a systematic and extensible architecture is proposed,where the joint requirement for network simulation,quantitative evaluation,data statistics and visualization is fully considered.For characterizing the network,we make lightweight abstractions of physical entities and models,which contain basic representatives of networking nodes,structures and protocol stacks.Then,to consider the high dynamics of Walker constellations,we give a two-stage topology maintenance method for constellation initialization and orbit prediction.Further,based on the discrete event simulation(DES)theory,a new set of discrete events is specifically designed for basic network processes,so as to maintain network state changes over time.Finally,taking the first-generation Starlink of 11927 low earth orbit(LEO)satellites as an example,we use UltraStar to fully evaluate its network performance for different deployment stages,such as characteristics of constellation topology,performance of end-to-end service and effects of network-wide traffic interaction.The simulation results not only demonstrate its superior performance,but also verify the effectiveness of UltraStar.展开更多
Satellite constellations are promising in enabling the global Internet.However,the increasing constellation size also complicates tracking,telemetry and command(TT&C)systems.Traditional groundbased and space-based...Satellite constellations are promising in enabling the global Internet.However,the increasing constellation size also complicates tracking,telemetry and command(TT&C)systems.Traditional groundbased and space-based approaches have encountered significant obstacles due to,e.g.,the limited satellite visible arc and long transmission delay.Considering the fast development of intersatellite communications,synergy among multiple connected satellites can be exploited to facilitate TT&C system designs.This leads to networked TT&C,which requires much less predeployed infrastructures and even performs better than traditional TT&C systems.In this paper,we elaborate system characteristics of networked TT&C compared with traditional ground-based and spacebased TT&C,and propose the unique security challenges and opportunities for networked TT&C,which includes secure routing and trust mechanisms.Furthermore,since networked TT&C is a novel scenario with few relevant researches,we first investigate the current researches on secure routing and trust mechanisms for traditional terrestrial and satellite networks,and then accordingly deliver our security perspectives considering the system characteristics and security requirements of networked TT&C.展开更多
The Low Earth Orbit(LEO)remote sensing satellite mega-constellation has the characteristics of large quantity and various types which make it have unique superiority in the realization of concurrent multiple tasks.How...The Low Earth Orbit(LEO)remote sensing satellite mega-constellation has the characteristics of large quantity and various types which make it have unique superiority in the realization of concurrent multiple tasks.However,the complexity of resource allocation is increased because of the large number of tasks and satellites.Therefore,the primary problem of implementing concurrent multiple tasks via LEO mega-constellation is to pre-process tasks and observation re-sources.To address the challenge,we propose a pre-processing algorithm for the mega-constellation based on highly Dynamic Spatio-Temporal Grids(DSTG).In the first stage,this paper describes the management model of mega-constellation and the multiple tasks.Then,the coding method of DSTG is proposed,based on which the description of complex mega-constellation observation resources is realized.In the third part,the DSTG algorithm is used to realize the processing of concurrent multiple tasks at multiple levels,such as task space attribute,time attribute and grid task importance evaluation.Finally,the simulation result of the proposed method in the case of constellation has been given to verify the effectiveness of concurrent multi-task pre-processing based on DSTG.The autonomous processing process of task decomposition and task fusion and mapping to grids,and the convenient indexing process of time window are verified.展开更多
The rejuvenation of non-geostationary orbit(NGSO)satellite communication holds the promise of seamless and ubiquitous broadband access from the space.However,the NGSO constellations must share the scarce radio spectru...The rejuvenation of non-geostationary orbit(NGSO)satellite communication holds the promise of seamless and ubiquitous broadband access from the space.However,the NGSO constellations must share the scarce radio spectrum resources with geostationary orbit(GSO)satellite systems,which results in dynamically changing and unevenly distributed interference to GSO systems.In this context,the ultra-large-scale NGSO constellation incurs a more complicated interference environment with GSO systems,which raises urgent demands on inter-system interference evaluation.In this case,we investigate the inter-system downlink interference from a NGSO satellite mega-constellation to a GSO earth station.Specifically,we consider the scenario where the NGSO and GSO earth stations are co-located,and apply a novel visibility analysis method in the interference modeling to reduce computation redundancy.The interference evaluation is then performed through comprehensive simulations,in which the Starlink constellation with more than 4000 satellites is examined for the first time.The simulation results demonstrate various states of interference on the GSO earth station at different deployment locations.It reveals that the number of visible satellites could influence the angle between the main lobe directions of NGSO satellites and the GSO earth station antenna,which further affects the interference level.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No.U2268204,62172061 and 61871422National Key R&D Program of China under Grant No.2020YFB1711800 and 2020YFB1707900+2 种基金the Science and Technology Project of Sichuan Province under Grant No.2023ZHCG0014,2023ZHCG0011,2022YFG0155,2022YFG0157,2021GFW019,2021YFG0152,2021YFG0025,2020YFG0322Central Universities of Southwest Minzu University under Grant No.ZYN2022032,2023NYXXS034the State Scholarship Fund of the China Scholarship Council under Grant No.202008510081。
文摘In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of satellites necessitate the use of edge computing to enhance secure communication.While edge computing reduces the burden on cloud computing, it introduces security and reliability challenges in open satellite communication channels. To address these challenges, we propose a blockchain architecture specifically designed for edge computing in mega-constellation communication systems. This architecture narrows down the consensus scope of the blockchain to meet the requirements of edge computing while ensuring comprehensive log storage across the network. Additionally, we introduce a reputation management mechanism for nodes within the blockchain, evaluating their trustworthiness, workload, and efficiency. Nodes with higher reputation scores are selected to participate in tasks and are appropriately incentivized. Simulation results demonstrate that our approach achieves a task result reliability of 95% while improving computational speed.
基金supported by the National Natural Science Foundation of China under Grant 62131012/61971261。
文摘With the development of the transportation industry, the effective guidance of aircraft in an emergency to prevent catastrophic accidents remains one of the top safety concerns. Undoubtedly, operational status data of the aircraft play an important role in the judgment and command of the Operational Control Center(OCC). However, how to transmit various operational status data from abnormal aircraft back to the OCC in an emergency is still an open problem. In this paper, we propose a novel Telemetry, Tracking,and Command(TT&C) architecture named Collaborative TT&C(CoTT&C) based on mega-constellation to solve such a problem. CoTT&C allows each satellite to help the abnormal aircraft by sharing TT&C resources when needed, realizing real-time and reliable aeronautical communication in an emergency. Specifically, we design a dynamic resource sharing mechanism for CoTT&C and model the mechanism as a single-leader-multi-follower Stackelberg game. Further, we give an unique Nash Equilibrium(NE) of the game as a closed form. Simulation results demonstrate that the proposed resource sharing mechanism is effective, incentive compatible, fair, and reciprocal. We hope that our findings can shed some light for future research on aeronautical communications in an emergency.
基金This work is supported by National Key Research and Development Plan of China(2022YFB3105204).
文摘Emerging long-range industrial IoT applications(e.g.,remote patient monitoring)have increasingly higher requirements for global deterministic delay.Although many existing methods have built deterministic networks in small-scale networks through centralized computing and resource reservation,they cannot be applied on a global scale.The emerging mega-constellations enable new opportunities for realizing deterministic delay globally.As one constellation(e.g.,Starlink)might be managed by a single operator(e.g.,SpaceX),packets can be routed within deterministic number of hops.Moreover,the path diversity brought by the highly symmetrical network structure in mega-constellations can help to construct a congestion free network by routing.This paper leverages these unique characteristics of mega-constellations to avoid the traditional network congestion caused by multiple inputs and single output,and to determine the routing hops,and thus realizing a global deterministic network(DETSPACE).The model based on the 2D Markov chain theoretically verifies the correctness of DETSPACE.The effectiveness of DETSPACE in different traffic load con-ditions is also verified by extensive simulations.
基金supported by National Natural Sciences Foundation of China(No.62271165,62027802,62201307)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297)+2 种基金the Shenzhen Science and Technology Program ZDSYS20210623091808025Stable Support Plan Program GXWD20231129102638002the Major Key Project of PCL(No.PCL2024A01)。
文摘Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.
基金supported by the Science and Technology Innovation Program of Hunan Province(2021RC3078)。
文摘In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the developing megaconstellations in low-Earth orbit,this paper proposes a relay tracking mode to track HGVs to overcome the above problem.The whole tracking mission is composed of several tracking intervals with the same duration.Within each tracking interval,several appropriate satellites are dispatched to track the HGV.Satellites that are planned to take part in the tracking mission are selected by a new derived observability criterion.The tracking performances of the proposed tracking mode and the other two traditional tracking modes,including the stare and track-rate modes,are compared by simulation.The results show that the relay tracking mode can track the whole trajectory of a HGV,while the stare mode can only provide a very short tracking arc.Moreover,the relay tracking mode achieve higher tracking accuracy with fewer attitude controls than the track-rate mode.
基金the National Key Research and Development Plan of China(No.2018YFB1800301)the National Natural Science Foundation of China(No.62132009)+1 种基金the Youth Fund of National Natural Science Foundation of China(No.61902214)the Tsinghua University-China Mobile Communications Group Co.,Ltd.Joint Institute。
文摘Low earth orbit(LEO)mega-constellations can provide global low-latency high bandwidth coverage compared to the terrestrial network.The time-varying topology of satellite networks and the uneven traffic distribution lead to the mismatch between satellites and users,resulting in the waste of satellite resources and the degradation of user performance.Through negotiation with neighbors,the traditional terrestrial cell breathing continuously converges to the optimal cell size in the face of user tides,but this method is difficult to converge timely when facing rapid and extreme flow changes caused by the rapid movement of satellites.This paper presents a fast adaptive cell breathing scheme(Fa B)through sub-block division and satellite cell initialization and adjustment.Fa B divides the ground into sub-blocks according to the user density.When the satellite moves in the same sub-block,the step size of breathing is adjusted according to the cell size difference between the previous satellite and the current satellite.When the satellite switches between different sub-blocks,the initial value of the cell is determined according to the density of the new sub-block.In addition to negotiating with neighboring satellites,this scheme also introduces location information to directly adjust the parameters of cell breathing and decrease the time of cell breathing convergence.From the real constellation data-driven simulation,we conclude that Fa B can quickly adjust the size of the cell with the location changing,and the utilization rate is increased by 2.66 times compared to the method with no cell breathing,and by2.37 times compared to the method with cell breathing without location information.
基金supported in part by the National Key Research and Development Program of China(2020YFB1806104)the Natural Science Fund for Distinguished Young Scholars of Jiangsu Province(BK20220067)the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘The mega-constellation network has gained significant attention recently due to its great potential in providing ubiquitous and high-capacity connectivity in sixth-generation(6G)wireless communication systems.However,the high dynamics of network topology and large scale of mega-constellation pose new challenges to the constellation simulation and performance evaluation.In this paper,we introduce UltraStar,a lightweight network simulator,which aims to facilitate the complicated simulation for the emerging mega-constellation of unprecedented scale.Particularly,a systematic and extensible architecture is proposed,where the joint requirement for network simulation,quantitative evaluation,data statistics and visualization is fully considered.For characterizing the network,we make lightweight abstractions of physical entities and models,which contain basic representatives of networking nodes,structures and protocol stacks.Then,to consider the high dynamics of Walker constellations,we give a two-stage topology maintenance method for constellation initialization and orbit prediction.Further,based on the discrete event simulation(DES)theory,a new set of discrete events is specifically designed for basic network processes,so as to maintain network state changes over time.Finally,taking the first-generation Starlink of 11927 low earth orbit(LEO)satellites as an example,we use UltraStar to fully evaluate its network performance for different deployment stages,such as characteristics of constellation topology,performance of end-to-end service and effects of network-wide traffic interaction.The simulation results not only demonstrate its superior performance,but also verify the effectiveness of UltraStar.
基金supported by the National Natural Science Foundation of China under Grant 61971261/62131012Technology Project of the State Grid Corporation of China under Grant 5400202255158A-1-1-ZN。
文摘Satellite constellations are promising in enabling the global Internet.However,the increasing constellation size also complicates tracking,telemetry and command(TT&C)systems.Traditional groundbased and space-based approaches have encountered significant obstacles due to,e.g.,the limited satellite visible arc and long transmission delay.Considering the fast development of intersatellite communications,synergy among multiple connected satellites can be exploited to facilitate TT&C system designs.This leads to networked TT&C,which requires much less predeployed infrastructures and even performs better than traditional TT&C systems.In this paper,we elaborate system characteristics of networked TT&C compared with traditional ground-based and spacebased TT&C,and propose the unique security challenges and opportunities for networked TT&C,which includes secure routing and trust mechanisms.Furthermore,since networked TT&C is a novel scenario with few relevant researches,we first investigate the current researches on secure routing and trust mechanisms for traditional terrestrial and satellite networks,and then accordingly deliver our security perspectives considering the system characteristics and security requirements of networked TT&C.
基金supported by the National Natural Science Foundation of China(Nos.62003115 and 11972130)the Shenzhen Science and Technology Program,China(JCYJ20220818102207015)the Heilongjiang Touyan Team Program,China。
文摘The Low Earth Orbit(LEO)remote sensing satellite mega-constellation has the characteristics of large quantity and various types which make it have unique superiority in the realization of concurrent multiple tasks.However,the complexity of resource allocation is increased because of the large number of tasks and satellites.Therefore,the primary problem of implementing concurrent multiple tasks via LEO mega-constellation is to pre-process tasks and observation re-sources.To address the challenge,we propose a pre-processing algorithm for the mega-constellation based on highly Dynamic Spatio-Temporal Grids(DSTG).In the first stage,this paper describes the management model of mega-constellation and the multiple tasks.Then,the coding method of DSTG is proposed,based on which the description of complex mega-constellation observation resources is realized.In the third part,the DSTG algorithm is used to realize the processing of concurrent multiple tasks at multiple levels,such as task space attribute,time attribute and grid task importance evaluation.Finally,the simulation result of the proposed method in the case of constellation has been given to verify the effectiveness of concurrent multi-task pre-processing based on DSTG.The autonomous processing process of task decomposition and task fusion and mapping to grids,and the convenient indexing process of time window are verified.
基金the Beijing Natural Science Foundation.L222003the National Key Research and Development Program.2020YFB1806100。
文摘The rejuvenation of non-geostationary orbit(NGSO)satellite communication holds the promise of seamless and ubiquitous broadband access from the space.However,the NGSO constellations must share the scarce radio spectrum resources with geostationary orbit(GSO)satellite systems,which results in dynamically changing and unevenly distributed interference to GSO systems.In this context,the ultra-large-scale NGSO constellation incurs a more complicated interference environment with GSO systems,which raises urgent demands on inter-system interference evaluation.In this case,we investigate the inter-system downlink interference from a NGSO satellite mega-constellation to a GSO earth station.Specifically,we consider the scenario where the NGSO and GSO earth stations are co-located,and apply a novel visibility analysis method in the interference modeling to reduce computation redundancy.The interference evaluation is then performed through comprehensive simulations,in which the Starlink constellation with more than 4000 satellites is examined for the first time.The simulation results demonstrate various states of interference on the GSO earth station at different deployment locations.It reveals that the number of visible satellites could influence the angle between the main lobe directions of NGSO satellites and the GSO earth station antenna,which further affects the interference level.