Melanocortin 4 receptor(MC4R),the most important monogenetic cause of human metabolic disorders,has been of great interest to many researchers in the field of energy homeostasis and public health.Because MC4R is a vit...Melanocortin 4 receptor(MC4R),the most important monogenetic cause of human metabolic disorders,has been of great interest to many researchers in the field of energy homeostasis and public health.Because MC4R is a vital pharmaceutical target for maintaining controllable appetite and body weight for professional athletes,previous studies have mainly focused on the central,rather than the peripheral,roles of MC4R.Thus,the local expression of MC4R and its behavioral regulation remain unclear.In an attempt to shed light on different directions for future studies of MC4R signaling,we review a series of recent and important studies exploring the peripheral functions of MC4R and the direct physiological interaction between peripheral organs and central MC4R neurons in this article.展开更多
The rostral ventromedial medulla (RVM) is a prominent component of the descending modulatory system involved in the control of spinal nociceptive transmission. In the current study, we investigated melanocortin-4 re...The rostral ventromedial medulla (RVM) is a prominent component of the descending modulatory system involved in the control of spinal nociceptive transmission. In the current study, we investigated melanocortin-4 receptor (MC4R) expression in the RVM, where the neurons involved in modulation of nociception reside. Using a line of mice expressing green fluorescent protein (GFP) under the control of the MC4R promoter, we found a large number of GFP-positive neurons in the RVM [nucleus raphe magnus (NRM) and nucleus gigantocellularis pars a (NGCa)]. Fluorescence immunohisto- chemistry revealed that approximately 10% of MC4R-GFP-positive neurons coexpressed tyrosine hydroxylase, indicating that they were catecholaminergic, whereas 50%-75% of those coexpressed tryp- tophan hydroxylase, indicating that they were serotonergic. Our findings support the hypothesis that MC4R signaling in RVM may modulate the activity of serotonergic sympathetic outflow sensitive to nociceptive signals, and that MC4R signaling in RVM may contribute to the descending modulation of nociceptive transmission.展开更多
基金Fundings supported by grants from the National Key Research and Development Program of China(Grant No.2017YFA0103902,2018YFA0800300,2019YFA0801900,2019YFA0111400)National Natural Science Foundation of China(Grant No.31771283,91749104,31971074)+3 种基金the Fundamental Research Funds for the Central Universities of Tongji University(No.22120190210)Innovative Research Team of High-Level Local Universities in Shanghai(No.SSMUZDCX20180700)Key Laboratory Program of the Education Commission of Shanghai Municipality(No.DSYS14005)the Science and Technology Innovation Action Plan of Shanghai Science and Technology Committee(No.18140901300).
文摘Melanocortin 4 receptor(MC4R),the most important monogenetic cause of human metabolic disorders,has been of great interest to many researchers in the field of energy homeostasis and public health.Because MC4R is a vital pharmaceutical target for maintaining controllable appetite and body weight for professional athletes,previous studies have mainly focused on the central,rather than the peripheral,roles of MC4R.Thus,the local expression of MC4R and its behavioral regulation remain unclear.In an attempt to shed light on different directions for future studies of MC4R signaling,we review a series of recent and important studies exploring the peripheral functions of MC4R and the direct physiological interaction between peripheral organs and central MC4R neurons in this article.
基金supported by grants from National Natural Science Foundation of China(No.81071307,No.81271766,and No.81673964)Special Fund of Fundamental Scientific Research Business Expense for Higher School of Central Government(No.2012TS060)
文摘The rostral ventromedial medulla (RVM) is a prominent component of the descending modulatory system involved in the control of spinal nociceptive transmission. In the current study, we investigated melanocortin-4 receptor (MC4R) expression in the RVM, where the neurons involved in modulation of nociception reside. Using a line of mice expressing green fluorescent protein (GFP) under the control of the MC4R promoter, we found a large number of GFP-positive neurons in the RVM [nucleus raphe magnus (NRM) and nucleus gigantocellularis pars a (NGCa)]. Fluorescence immunohisto- chemistry revealed that approximately 10% of MC4R-GFP-positive neurons coexpressed tyrosine hydroxylase, indicating that they were catecholaminergic, whereas 50%-75% of those coexpressed tryp- tophan hydroxylase, indicating that they were serotonergic. Our findings support the hypothesis that MC4R signaling in RVM may modulate the activity of serotonergic sympathetic outflow sensitive to nociceptive signals, and that MC4R signaling in RVM may contribute to the descending modulation of nociceptive transmission.