The Qinling Mountains, known for their rich vegetation and diverse pollinating insects, have seen a significant decline in bee species richness and abundance over recent decades, largely due to the introduction and sp...The Qinling Mountains, known for their rich vegetation and diverse pollinating insects, have seen a significant decline in bee species richness and abundance over recent decades, largely due to the introduction and spread of Apis mellifera. This decline has caused cascading effects on the region's community structure and ecosystem stability. To improve the protection of native bees in the natural and agricultural landscape of the Qinling Mountains and its surrounding areas, we investigated 33 sampling sites within three habitats: forest, forest-agriculture ecotones, and farmland. Using a generalized linear mixing model, t-test, and other data analysis methods, we explored the impact of Apis mellifera on local pollinator bee richness, abundance, and the pollination network in different habitats in these regional areas. The results show that(1)Apis mellifera significantly negatively affects the abundance and richness of wild pollinator bees,while Apis cerana abundance is also affected by beekeeping conditions.(2)There are significant negative effects of Apis mellifera on the community structure of pollinator bees in the Qinling Mountains and its surrounding areas: the Shannon-Wiener diversity index, Pielou evenness index, and Margalef richness index of bee communities at sites with Apis mellifera influence were significantly lower than those at sites without Apis mellifera influence.(3)The underlying driver of this effect is the monopolization of flowering resources by Apis mellifera. This species tends to visit flowering plants with large nectar sources, which constitute a significant portion of the local plant community. By maintaining a dominant role in the bee-plant pollination network, Apis mellifera competitively displaces native pollinator bees, reducing their access to floral resources. This ultimately leads to a reduction in local bee-plant interactions, decreasing the complexity and stability of the pollination network. These findings highlight the need for targeted conservation efforts to protect native pollinator species and maintain the ecological balance in the Qinling Mountains.展开更多
The Cap Pushing Response (CPR) is a free-flying technique used to study learning and memory in honey bees (Apis mellifera). The series of experiments outlined in this paper aimed to test whether honey bees exhibit the...The Cap Pushing Response (CPR) is a free-flying technique used to study learning and memory in honey bees (Apis mellifera). The series of experiments outlined in this paper aimed to test whether honey bees exhibit the cognitive concept of “expectancy” utilizing the CPR in a weight differentiation paradigm. Five previous experiments in our laboratory have explored whether the concept of expectancy can account for honey bee performance and have all failed to support the cognitive interpretation. The first experiment examined if bees could differentiate between the two caps in the amount of force they used to push the cap and the distance the cap was pushed when the caps were presented one at a time. The second experiment explored cap weight preference by presenting bees with a choice between the two caps. The third and fourth experiments tested the bee’s ability to expect reward or punishment based on cap weight. Results revealed that bees were found to have a strong preference for the light cap and therefore were not able to expect reward or punishment based on cap weight. These experiments contribute to the debate on whether bees have “cognitive” representations and continue to support the behaviorist interpretation.展开更多
【目的】解析意大利蜜蜂Apis mellifera ligustica工蜂幼虫肠道发育过程中的长链非编码RNA(long non-coding RNA,lncRNA)差异表达谱,并揭示差异表达lncRNA(differentially expressed lncRNA,DElncRNA)在幼虫肠道发育中的调控作用。【方...【目的】解析意大利蜜蜂Apis mellifera ligustica工蜂幼虫肠道发育过程中的长链非编码RNA(long non-coding RNA,lncRNA)差异表达谱,并揭示差异表达lncRNA(differentially expressed lncRNA,DElncRNA)在幼虫肠道发育中的调控作用。【方法】基于前期获得的意大利蜜蜂工蜂4,5和6日龄幼虫肠道转录组数据(分别为Am4,Am5和Am6),利用相关软件筛选Am4 vs Am5比较组和Am5 vs Am6比较组中的DElncRNA,分析DElncRNA和两个比较组中共同上调和下调lncRNA的顺式调控作用及竞争性内源RNA(competing endogenous RNA,ceRNA)的调控作用。通过RT-qPCR验证转录组数据的可靠性。【结果】在Am4 vs Am5比较组中筛选出214条上调和251条下调lncRNA,在Am5 vs Am6比较组中筛选出141条上调和332条下调lncRNA;两个比较组共有的上调和下调lncRNA分别为7和16条。Am4 vs Am5比较组中的DElncRNA潜在调控250个邻近基因,涉及细胞进程等28个GO条目及Wnt信号通路等58条KEGG通路;Am5 vs Am6比较组中的DElncRNA潜在调控295个邻近基因,涉及细胞部分等35个GO条目及FoxO信号通路等73条KEGG通路;上述两个比较组中共有的7个上调lncRNA潜在调控10个邻近基因,涉及1个GO条目及代谢通路、谷胱甘肽代谢和核质转运等7条KEGG通路。共有的16个下调lncRNA潜在调控27个邻近基因,涉及8个GO条目及精氨酸生物合成、谷胱甘肽代谢和代谢通路等13条KEGG通路。此外,Am4 vs Am5比较组中的49条DElncRNA可靶向16个差异表达miRNA(differentially expressed miRNA,DEmiRNA)进而靶向122条差异表达mRNA(differentially expressed mRNA,DEmRNA),可注释到代谢进程等24个GO条目和Wnt信号通路等21条KEGG通路。Am5 vs Am6比较组中的38条DElncRNA可靶向8条DEmiRNA进而靶向67条DEmRNA,可注释到催化活性等21个GO条目和FoxO信号通路等10条KEGG通路;上述两个比较组共有的1条下调lncRNA MSTRG.10589.2可靶向ame-miR-6052和miR-511-y,进而靶向29条DEmRNA。RT-qPCR结果显示随机选取的7条DElncRNA的相对表达量与测序数据一致,证实了所用转录组数据的可靠性。【结论】意大利蜜蜂工蜂幼虫肠道发育过程伴随着lncRNA的动态差异表达,DElncRNA可通过顺式作用和ceRNA网络潜在参与对幼虫肠道发育的调控,在幼虫肠道发育中潜在发挥重要的调控作用。展开更多
基金funded by the National Key R&D Program of China (2022YFE0115200)the Biodiversity Survey and the Assessment Project of the Ministry of Ecology and Environment, China (2019HJ2096001006)the National Animal Collection Resource Center, China。
文摘The Qinling Mountains, known for their rich vegetation and diverse pollinating insects, have seen a significant decline in bee species richness and abundance over recent decades, largely due to the introduction and spread of Apis mellifera. This decline has caused cascading effects on the region's community structure and ecosystem stability. To improve the protection of native bees in the natural and agricultural landscape of the Qinling Mountains and its surrounding areas, we investigated 33 sampling sites within three habitats: forest, forest-agriculture ecotones, and farmland. Using a generalized linear mixing model, t-test, and other data analysis methods, we explored the impact of Apis mellifera on local pollinator bee richness, abundance, and the pollination network in different habitats in these regional areas. The results show that(1)Apis mellifera significantly negatively affects the abundance and richness of wild pollinator bees,while Apis cerana abundance is also affected by beekeeping conditions.(2)There are significant negative effects of Apis mellifera on the community structure of pollinator bees in the Qinling Mountains and its surrounding areas: the Shannon-Wiener diversity index, Pielou evenness index, and Margalef richness index of bee communities at sites with Apis mellifera influence were significantly lower than those at sites without Apis mellifera influence.(3)The underlying driver of this effect is the monopolization of flowering resources by Apis mellifera. This species tends to visit flowering plants with large nectar sources, which constitute a significant portion of the local plant community. By maintaining a dominant role in the bee-plant pollination network, Apis mellifera competitively displaces native pollinator bees, reducing their access to floral resources. This ultimately leads to a reduction in local bee-plant interactions, decreasing the complexity and stability of the pollination network. These findings highlight the need for targeted conservation efforts to protect native pollinator species and maintain the ecological balance in the Qinling Mountains.
文摘The Cap Pushing Response (CPR) is a free-flying technique used to study learning and memory in honey bees (Apis mellifera). The series of experiments outlined in this paper aimed to test whether honey bees exhibit the cognitive concept of “expectancy” utilizing the CPR in a weight differentiation paradigm. Five previous experiments in our laboratory have explored whether the concept of expectancy can account for honey bee performance and have all failed to support the cognitive interpretation. The first experiment examined if bees could differentiate between the two caps in the amount of force they used to push the cap and the distance the cap was pushed when the caps were presented one at a time. The second experiment explored cap weight preference by presenting bees with a choice between the two caps. The third and fourth experiments tested the bee’s ability to expect reward or punishment based on cap weight. Results revealed that bees were found to have a strong preference for the light cap and therefore were not able to expect reward or punishment based on cap weight. These experiments contribute to the debate on whether bees have “cognitive” representations and continue to support the behaviorist interpretation.
文摘【目的】解析意大利蜜蜂Apis mellifera ligustica工蜂幼虫肠道发育过程中的长链非编码RNA(long non-coding RNA,lncRNA)差异表达谱,并揭示差异表达lncRNA(differentially expressed lncRNA,DElncRNA)在幼虫肠道发育中的调控作用。【方法】基于前期获得的意大利蜜蜂工蜂4,5和6日龄幼虫肠道转录组数据(分别为Am4,Am5和Am6),利用相关软件筛选Am4 vs Am5比较组和Am5 vs Am6比较组中的DElncRNA,分析DElncRNA和两个比较组中共同上调和下调lncRNA的顺式调控作用及竞争性内源RNA(competing endogenous RNA,ceRNA)的调控作用。通过RT-qPCR验证转录组数据的可靠性。【结果】在Am4 vs Am5比较组中筛选出214条上调和251条下调lncRNA,在Am5 vs Am6比较组中筛选出141条上调和332条下调lncRNA;两个比较组共有的上调和下调lncRNA分别为7和16条。Am4 vs Am5比较组中的DElncRNA潜在调控250个邻近基因,涉及细胞进程等28个GO条目及Wnt信号通路等58条KEGG通路;Am5 vs Am6比较组中的DElncRNA潜在调控295个邻近基因,涉及细胞部分等35个GO条目及FoxO信号通路等73条KEGG通路;上述两个比较组中共有的7个上调lncRNA潜在调控10个邻近基因,涉及1个GO条目及代谢通路、谷胱甘肽代谢和核质转运等7条KEGG通路。共有的16个下调lncRNA潜在调控27个邻近基因,涉及8个GO条目及精氨酸生物合成、谷胱甘肽代谢和代谢通路等13条KEGG通路。此外,Am4 vs Am5比较组中的49条DElncRNA可靶向16个差异表达miRNA(differentially expressed miRNA,DEmiRNA)进而靶向122条差异表达mRNA(differentially expressed mRNA,DEmRNA),可注释到代谢进程等24个GO条目和Wnt信号通路等21条KEGG通路。Am5 vs Am6比较组中的38条DElncRNA可靶向8条DEmiRNA进而靶向67条DEmRNA,可注释到催化活性等21个GO条目和FoxO信号通路等10条KEGG通路;上述两个比较组共有的1条下调lncRNA MSTRG.10589.2可靶向ame-miR-6052和miR-511-y,进而靶向29条DEmRNA。RT-qPCR结果显示随机选取的7条DElncRNA的相对表达量与测序数据一致,证实了所用转录组数据的可靠性。【结论】意大利蜜蜂工蜂幼虫肠道发育过程伴随着lncRNA的动态差异表达,DElncRNA可通过顺式作用和ceRNA网络潜在参与对幼虫肠道发育的调控,在幼虫肠道发育中潜在发挥重要的调控作用。