期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Preparation of TiC/Ni_3Al Composites by Upward Melt Infiltration 被引量:6
1
作者 Yi PAN (Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China) Kewei SUN (National Engineering Research Center of Solid Waste Resources Recovery, Kunming University of Science and Technology,Kunming 650093, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第4期387-392,共6页
TiC/Ni_3Al composites have been prepared using upward infiltration method. The densification was performed by both Ni_3Al melt filling and TiC sintering during the infiltration. The dissolution of TiC in liquid Ni_3A... TiC/Ni_3Al composites have been prepared using upward infiltration method. The densification was performed by both Ni_3Al melt filling and TiC sintering during the infiltration. The dissolution of TiC in liquid Ni_3Al has been evidenced by finding Ni_3(Al,Ti)C after fast cooling in the TiC/Ni_3Al composites. The dissolution may be responsible for the infiltration and sintering. Compared with downward infiltration, the upward infiltration brought about higher strength and fracture toughness and shorter infiltration time. TiC/20 vol. pct Ni_3Al composite processed by upward infiltration had a flexural strength of 1476 MPa with a statistic Weibull modulus of 20.2 and a fracture toughness of 20.4 MPa . Better mechanical properties may be attributed to melt unidirectional movement in upward infiltration. 展开更多
关键词 TIC Preparation of TiC/Ni3Al Composites by Upward melt infiltration NI AL
下载PDF
Synthesis of SiC/Al Co-Continuous Composite by Spontaneous Melt Infiltration 被引量:4
2
作者 Guangwei HAN and Di FENG (Central Iron & Steel Research Institute, Beijing 100081, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第5期466-470,共5页
Investigation has been made on the process of synthesizing SiC/Al co-continuous composite by spontaneous melt infiltration. It is found that nitrogen atmosphere is an indispensable factor for spontaneous infiltration ... Investigation has been made on the process of synthesizing SiC/Al co-continuous composite by spontaneous melt infiltration. It is found that nitrogen atmosphere is an indispensable factor for spontaneous infiltration of melt Al into SiC preform with continuous porosity. The critical temperature for spontaneous infiltration occurrence can be lowered and spontaneous infiltration rate increased by doping a small amount of Mg into the Al alloy. Adding fine SiO2 powders into the ceramic preform can play the similar role as Mg-doping by increasing wetting through the chemical reaction of 3SiO2+4AI=2Al2O3+3Si at the infiltration front. Infiltration rate can also be increased by Si-doping to lower the viscosity of the molten Al alloy. In addition, sufficient Si content in the molten Al is also indispensable to avoid the formation of Al4C in the synthesized composite. 展开更多
关键词 CO SIC Synthesis of SiC/Al Co-Continuous Composite by Spontaneous melt infiltration Al
下载PDF
Melt Infiltration Ability and Microstructural Evolution of Fe40Al/ TiC Composites System 被引量:2
3
作者 F J Oliveira J L Baptista J M Vieira 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期93-,共1页
Pressureless melt infiltration is an economic route f or preparation of high-density ceramic/melt composites. In this study, the Fe40 Al iron aluminide intermetallic, a low cost material of excellent oxidation and cor... Pressureless melt infiltration is an economic route f or preparation of high-density ceramic/melt composites. In this study, the Fe40 Al iron aluminide intermetallic, a low cost material of excellent oxidation and corrosion resistance, was used as binder for fabricating Fe40Al/TiC composites b y pressureless melt infiltration. The wetting ability of liquid Fe40Al in porous TiC pre-form was studied by in-situ monitoring the melting and infiltration p rocess. The infiltration ability was investigated by observing the distance of l iquid Fe40Al intrusion in porous TiC pre-forms at different infiltration temper atures and times by using optical microscope. Porous TiC per-forms with density of 60%~88%TD (theoretical density), prepared under pre-defined sintering temp e rature cycles, were used for fabricating Fe40Al/TiC composites in the range of 1 2%~40% metal content by volume. Almost full dense Fe40Al/TiC composites were su c cessfully fabricated by this technique. Liquid Fe40Al exhibited excellent infilt ration ability, the distance of complete intrusion of liquid Fe40Al in the TiC s intered pre-form with density of 88%TD was over 7 mm after 5 min at the inf iltration temperature of 1 450 ℃. Microstructural observation by SEM and TEM also showed that liquid Fe40Al filled the very narrow gaps among TiC particles, the interfaces of TiC particles and F e40Al plastic ligaments being metallurgical bonded. TEM revealed that high densi ty of dislocations formed in Fe40Al ligaments during solidification, which favor the mechanical properties. Ti decomposed from TiC particles and dissolved into Fe40Al during infiltration. According to the compositional analysis of TEM-EDS, the concentration of Ti in Fe40Al ranges at 1at%~4at% depending on composite f a bricating conditions and the distance from the measuring point to the closest Ti C particles. XRD analysis indicated that the composites were composed of two pha ses, the original TiC and Fe 0.4Al 0.6 intermetallic. No new phase formed during infiltration, but the lattice parameter of Fe 0.4Al 0.6 was expended due to the Ti in the solid solution. 展开更多
关键词 TiC Composites System melt infiltration Ability and Microstructural Evolution of Fe40Al FE
下载PDF
Theoretical study of reactive melt infiltration to fabricate Co-Si/C composites
4
作者 Saqib Shahzad Khurram Iqbal Zaheer Uddin 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第11期434-439,共6页
Cobalt-silicon based carbon composites(Co–Si/C)have established a noteworthy consideration in recent years as a replacement for conventional materials in the automotive and aerospace industries.To achieve the composi... Cobalt-silicon based carbon composites(Co–Si/C)have established a noteworthy consideration in recent years as a replacement for conventional materials in the automotive and aerospace industries.To achieve the composite,a reactive melt infiltration process(RMI)is used,in which a melt impregnates a porous preform by capillary force.This method promises a high-volume fraction of reinforcement and can be steered in such a way to get the good“near-net”shaped components.A mathematical model is developed using reaction-formed Co–Si alloy/C composite as a prototype system for this process.The wetting behavior and contact angle are discussed;surface tension and viscosity are calculated by Wang’s and Egry’s equations,respectively.Pore radii of 5μm and 10μm are set as a reference on highly oriented pyrolytic graphite.The graphs are plotted using the model,to study some aspects of the infiltration dynamics.This highlights the possible connections among the various processes.In this attempt,the Co–Si(62.5 at.%silicon)alloy’s maximum infiltration at 5μm and 10μm radii are found as 0.05668 m at 125 s and 0.22674 m at 250 s,respectively. 展开更多
关键词 cobalt-silicon/carbon composites Co-Si alloy reactive melt infiltration(RMI) carbon preforms
下载PDF
Microstructure and Mechanical Properties of C/C-ZrC-SiC Composites Fabricated by Reactive Melt Infiltration with Zr,Si Mixed Powders 被引量:25
5
作者 Xin Yang Zhean Su +2 位作者 Qizhong Huang Xiao Fang Liyuan Chai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第8期702-710,共9页
To meet the increasing demand for advanced materials capable of operation over 2000 ℃ for future thermal protection systems application, C/C-ZrC-SiC composites were fabricated by reactive melt infiltration (RMI) wi... To meet the increasing demand for advanced materials capable of operation over 2000 ℃ for future thermal protection systems application, C/C-ZrC-SiC composites were fabricated by reactive melt infiltration (RMI) with Zr, Si mixed powders as raw materials. The structural evolution and formation mechanism of the C/C- ZrC-SiC composites were discussed, and the mechanical property of the as-prepared material was investigated by compression test. The results showed that after the RMI process, a special structure with ZrC-SiC multi-coating as outer layer and ZrC-SiC-PyC ceramics as inner matrix was formed. ZrC and SiC rich areas were formed in the composites and on the coating surface due to the formation of Zr-Si intermetallic compounds in the RMI process. Mechanical tests showed that the average compression strength of the C/C-ZrC-SiC composites was 133.86 MPa, and the carbon fibers in the composites were not seriously damaged after the RMI process. 展开更多
关键词 Carbon/carbon composites Reactive melt infiltration COATING ZRC SIC
原文传递
Processing of B_4C Particulate-reinforced Magnesium-matrix Composites by Metal-assisted Melt Infiltration Technique 被引量:11
6
作者 Yantao Yao Liqing Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第7期661-665,共5页
In fabricating magnesium-matrix composites, an easy and cost-effective route is to infiltrate the ceramic preform with molten Mg without any external pressure. However, a rather well wettability of molten Mg with cera... In fabricating magnesium-matrix composites, an easy and cost-effective route is to infiltrate the ceramic preform with molten Mg without any external pressure. However, a rather well wettability of molten Mg with ceramic reinforcement is needed for this process. In order to improve the wettability of the metal melt with ceramic preform during fabricating composites by metal melt infiltration, a simple and viable method has been proposed in this paper where a small amount of metal powder with higher melting point is added to the ceramic preform such that the surface tension of the Mg melt and the liquid-solid interfacial tension could be reduced. By using this method, boron carbide particulate-reinforced magnesium-matrix composites (B4C/Mg) have been successfully fabricated where Ti powder immiscible with magnesium melt was introduced into B4C preform as infiltration inducer. The infiltration ability of molten Mg to the ceramic preform was further studied in association with the processing conditions and the mechanism involved in this process was also analyzed. 展开更多
关键词 Magnesium-matrix composites Boron carbide melt infiltration MICROSTRUCTURE Mechanism
原文传递
Fabrication and microstructure of ZrB_2–ZrC–SiC coatings on C/C composites by reactive melt infiltration using ZrSi_2 alloy 被引量:6
7
作者 Chaoqiang XUE Haijun ZHOU +3 位作者 Jianbao HU Hongda WANG Jiayue XU Shaoming DONG 《Journal of Advanced Ceramics》 SCIE CSCD 2018年第1期64-71,共8页
ZrB_2–ZrC–SiC ternary coatings on C/C composites are investigated by reactive melt infiltration of ZrSi_2 alloy into pre-coatings. Two different pre-coating structures, including porous B_4C–C and dense C/B, are de... ZrB_2–ZrC–SiC ternary coatings on C/C composites are investigated by reactive melt infiltration of ZrSi_2 alloy into pre-coatings. Two different pre-coating structures, including porous B_4C–C and dense C/B, are designed by slurry dip and chemical vapor deposition(CVD) process respectively. The coating prepared by reactive melt infiltration(RMI) into B_4C–C presents a flat and smooth surface with a three-layer cross-sectional structure, namely interior SiC transition layer, gradient ZrB_2–ZrC–SiC layer, and ZrB_2–ZrC exterior layer. In comparison, the coating prepared by RMI into C/B shows a more granular surface with a different three-layer cross-sectional structure, interior unreacted B–C pre-coating layer, middle SiC layer, and exterior ZrB_2–ZrC–ZrSi_2 layer. The forming mechanisms of the specific microstructures in two coatings are also investigated and discussed in detail. 展开更多
关键词 ultra-high temperature ceramics(UHTCs) COATING reactive melt infiltration(RMI) ALLOY
原文传递
Reactivity improvement of ilmenite by calcium nitrate melt infiltration for Chemical Looping Combustion of biomass 被引量:1
8
作者 Martin Keller Hikaru Oka Junichiro Otomo 《Carbon Resources Conversion》 2019年第1期51-58,共8页
Chemical Looping Combustion is a novel process that generates sequestration-ready CO_(2) from the combustion of woody biomass without requiring a gas separation step and without diluting the CO_(2) with N_(2) from air... Chemical Looping Combustion is a novel process that generates sequestration-ready CO_(2) from the combustion of woody biomass without requiring a gas separation step and without diluting the CO_(2) with N_(2) from air.This is achieved by oxidizing the fuel with lattice oxygen of a metal oxide oxygen carrier.When using cheap and abundant ilmenite ore(FeTiO3)as the oxygen carrier,the rather low reactivity towards volatiles released from the biomass upon devolatilization,as well as detrimental structural changes due to a segregation of Fe and Ti in the material,are of concern.These issues can be addressed by modifying ilmenite with Ca via melt infiltration.In this work,we demonstrate that this modification results in a good distribution of Ca throughout the ilmenite particles that a)prevents detrimental Fe/Ti segregation,b)improves the mechanical stability of the particle compared to materials prepared by solution impregnation and c)improves the reactivity of this material towards hydrogen and wet methane.Moreover,fixed bed experiments showed that the Ca modification not only resulted in increased methane conversion,but also in an increased degree of oxidation of gaseous intermediates CO and H2.We thus conclude that the performance of ilmenite in Chemical Looping processes can be significantly enhanced by Ca modification of ilmenite either prior to use or in-situ during operation of this bed material with Ca-rich fuels such as woody biomass. 展开更多
关键词 Carbon dioxide removal Chemical Looping Combustion ILMENITE melt infiltration BECCS Biomass combustion
原文传递
Microstructure and Mechanical Properties of ZrC_(x)-NbC_(y)-Cu Composites by Reactive Infiltration at 1300℃
9
作者 王东 XU Kai +1 位作者 WEI Boxin WANG Yujin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期52-58,共7页
ZrC_(x)-NbC_(y)-Cu composites were fabricated by pressure-less reactive infiltration of Zr-Cu binary melts into porous NbC preforms at 1300℃.The effect of Zr content in the infiltrator on microstructure of the as-syn... ZrC_(x)-NbC_(y)-Cu composites were fabricated by pressure-less reactive infiltration of Zr-Cu binary melts into porous NbC preforms at 1300℃.The effect of Zr content in the infiltrator on microstructure of the as-synthesized composites was studied.Mechanical properties of the composites were reported.A partial displacement of Nb atoms in NbC by Zr atoms from Zr-Cu melt occurs during the reaction between Zr-Cu melt and porous NbC preform.The formation of a core-shell structure suggests the reaction is mainly a dissolutionprecipitation type.NbC dissolves into Zr-Cu melt,from which the(Nb,Zr)C_(z)phase precipitates and grows.With increasing Zr content in the Zr-Cu infiltrator,the reaction is enhanced and the infiltration is easily chocked.ZrC_(x)-NbC_(y)-Cu composite is synthesized using Zr_(14)Cu_(51)infiltrator.The flexural strength and fracture toughness of ZrC_(x)-NbC_(y)-Cu composite reach 637 MPa and 12.7 MPa·m^(1/2),respectively.And the improved toughness is probably attributed to residual Cu phase and plate-like Nb_(x)C_(y)phases. 展开更多
关键词 ZrC_(x)-NbC_(y)-Cu composite reactive melt infiltration microstructure mechanical properties
下载PDF
Preparation and Arc Erosion Resistance of C_f/Cu Composite by Vacuum Melting Infiltration 被引量:3
10
作者 张华煜 LIU Yiwen +1 位作者 ZHAO Xianling LUAN Xingang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第5期1039-1043,共5页
Cf/Cu composite was prepared by vacuum melting infiltration. Ti and Cr were doped to the Cu alloy to improve the wettability between Cu and carbon. The microstrueture was investigated by XRD, SEM and EDS. The arc eros... Cf/Cu composite was prepared by vacuum melting infiltration. Ti and Cr were doped to the Cu alloy to improve the wettability between Cu and carbon. The microstrueture was investigated by XRD, SEM and EDS. The arc erosion rate of Cf/Cu composite was investigated in vacuum. The results showed that the Ti and Cr could improve the wettability between Cu and C/C preform and the infiltration ability of Cu into C/ C preform greatly. A TiC interface formed between the fibers and matrix. The good bonding between the fiber and matrix guaranteed that part of the Cu matrix can still be bonded on the fibers even when the material was exposed to the plasma. Consequently, the carbon fibers were protected from the erosion. In comparison, Cu was completely consumed by the arc erosion. Hence, the graphite was eroded and presented a cauliflower-like morphology. Therefore, the prepared C/Cu bad better ability to resist the arc erosion, compared with common Cu-C material. 展开更多
关键词 Cf/Cu composite vacuum melting infiltration arc erosion
下载PDF
Novel titanium particles reinforced Zr-based bulk metallic glass composites prepared by infiltration casting
11
作者 Cuimei Zhang Xidong Hui Meiling Wang Guoliang Chen 《Journal of University of Science and Technology Beijing》 CSCD 2008年第4期505-508,共4页
A novel Ti/Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 composite was successfully prepared by infiltrating the melt into sintered Ti preform. It shows that the introduction of Ti particles into the composite results in an increase... A novel Ti/Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 composite was successfully prepared by infiltrating the melt into sintered Ti preform. It shows that the introduction of Ti particles into the composite results in an increase in elastic strain to 3% and an enhancement of the strength up to 2.1 GPa. High specific strength has been obtained because of the decrease in density of the composite. It is suggested that an improvement in the mechanical properties of the composite may be attributed to the generation of multiple shear bands and some deformation in the Ti particles. 展开更多
关键词 melt infiltration bulk metallic-glass Ti particles mechanical properties
下载PDF
INFILTRATION KINETICS MODEL OF LIQUID METAL INTO A FIBROUS PREFORM IN CENTRIFUGAL ACCELERATING FIELD 被引量:2
12
作者 Zhang Xinping,Yu Sirong,He Zhenming (College of Materials Science and Engineering,Jilin University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2001年第4期293-296,共4页
The infiltration kinetics of the metal melt into a fibrous preform in centrifugal accelerating field is analyzed on the basis of Darcy's law and the assumption that the fibrous preform is treated as 'bundle of... The infiltration kinetics of the metal melt into a fibrous preform in centrifugal accelerating field is analyzed on the basis of Darcy's law and the assumption that the fibrous preform is treated as 'bundle of capillaries' The critical rotating speed is analyzed with the established model The influences of the metal melt mass,the rotating speed of the equipment,the casting height, the original outer radius of the metal melt and the fibrous volume fraction in fibrous preform on infilatration are studied The results show that the critical rotating speed is dependent on critical pressure, casting height, metal melt mass and the character of fibrous preform With the increase in the metal melt mass, rotating speed of the equipment and original outer radius of the metal melt, or the decrease in casting height and fibrous volume fraction in fibrous of the metal melt,or the decrease in casting height and fibrous volume fraction in fibrous preform,infiltration of metal melt for fibrous preform becomes easier. 展开更多
关键词 Centrifugal accelerating field Metal melt Fiber infiltration kinetics Metal matrix composite
下载PDF
Progress in Recrystallized SiC and Its Composites
13
作者 GUO Wenming XIAO Hanning GAO Pengzhao 《China's Refractories》 CAS 2015年第3期22-28,共7页
Recrystallized silicon carbide( RSi C),a high purity Si C material sintered by the process of evaporation-condensation without any additives,is one of the most important structural materials in the fields of high te... Recrystallized silicon carbide( RSi C),a high purity Si C material sintered by the process of evaporation-condensation without any additives,is one of the most important structural materials in the fields of high temperatures. However,its low density and porous structure caused by the sintering mechanism in the absence of shrinkage,restrict its wide applications in engineering.This paper reviews the research progress and related technologies on the preparation of high-density RSi C and its composites. RSi C with relative high density up to 2. 75g·cm- 3can be obtained by a combination of pretreatment to Si C raw materials such as reshaping,modification and particle size distribution,and appropriate forming method. Post treatments such as cyclic pyrolysis and impregnation- recrystallization,and slurry impregnation- recrystallization are needed for the further density increase of RSi C( 2. 99 g·cm- 3). In addition,high performance RSi C- Mo Si2 and RSi C- Al composites obtained by melt infiltration are also reviewed. 展开更多
关键词 recrystallized silicon carbide molybdenum disilicide polymer pyrolysis and impregnation melt infiltration
下载PDF
Wear-resistant Ag-MAX phase 3D interpenetrating-phase composites:Processing,structure,and properties 被引量:1
14
作者 Yu Guo Xi Xie +11 位作者 Zengqian Liu Longchao Zhuo Jian Zhang Shaogang Wang Qiqiang Duan Qing Jia Dake Xu Weihai Xue Deli Duan Filippo Berto Zhefeng Zhang Rui Yang 《Nano Research》 SCIE EI CSCD 2024年第2期806-819,共14页
Electrical contact materials are generally Ag-or Cu-based composites and play a critical role in ensuring the reliability and efficiency of electrical equipments and electronic instruments.The MAX(M is an early transi... Electrical contact materials are generally Ag-or Cu-based composites and play a critical role in ensuring the reliability and efficiency of electrical equipments and electronic instruments.The MAX(M is an early transition metal,A is an element from III or IV main groups,and X is carbon or/and nitrogen)phase ceramics display a unique combination of properties and may serve as an ideal reinforcement phase for electrical contact materials.The biological materials evolved in nature generally exhibit three-dimensional(3D)interpenetrating-phase architectures,which may offer useful inspiration for the architectural design of electrical contact materials.Here,a series of bi-continuous Ag-Ti_(3)SiC_(2) MAX phase composites with high ceramic contents exceeding 50 vol.%and having micron-and ultrafine-scaled 3D interpenetrating-phase architectures,wherein both constituents were continuous and mutually interspersed,were exploited by pressureless infiltration of Ag melt into partially sintered Ti_(3)SiC_(2) scaffolds.The mechanical and electrical properties as well as the friction and wear performance of the composites were investigated and revealed to be closely dependent on the ceramic contents and characteristic structural dimensions.The composites exhibited a good combination of properties with high hardness over 2.3 GPa,high flexural strength exceeding 530 MPa,decent fracture toughness over 10 MPa·m^(1/2),and good wear resistance with low wear rate at an order of 10^(-5)mm^(3)/(N·m),which were much superior compared to the counterparts made by powder metallurgy methods.In particular,the hardness,electrical conductivity,strength,and fracture toughness of the composites demonstrated a simultaneous improvement as the structure was refined from micron-to ultrafine-scales at equivalent ceramic contents.The good combination of properties along with the facile processing route makes the Ag-Ti_(3)SiC_(2)3D interpenetrating-phase composites appealing for electrical contact applications. 展开更多
关键词 three-dimensional(3D)interpenetrating-phase architecture Ag-MAX(M=early transition metal A=element from III or IV main groups and X=carbon or/and nitrogen)phase composites melt infiltration electrical contact materials mechanical
原文传递
Reaction mechanism and microstructure development of ZrSi_(2) melt-infiltrated C_(f)/SiC-ZrC-ZrB_(2) composites:The influence of preform pore structures 被引量:5
15
作者 Xiaowu Chen Dewei Ni +4 位作者 Yanmei Kan Youlin Jiang Haijun Zhou Zhen Wang Shaoming Dong 《Journal of Materiomics》 SCIE EI 2018年第3期266-275,共10页
Reactive melt infiltration(RMI)is an effective method for fabrication of highly dense carbon fiber reinforced ultra-high temperature ceramic matrix composites(Cf/UHTCs).In this work,C_(f)/SiC-ZrC-ZrB_(2)composites wer... Reactive melt infiltration(RMI)is an effective method for fabrication of highly dense carbon fiber reinforced ultra-high temperature ceramic matrix composites(Cf/UHTCs).In this work,C_(f)/SiC-ZrC-ZrB_(2)composites were fabricated by infiltrating ZrSi_(2)melt into porous C_(f)/B_(4)C-C preforms,where the physical and chemical reactions involved during the RMI process were identified and analyzed.Inhomogeneous infiltration between the inter-and intra-bundle pores was revealed,and was found to be strongly related to the pore structures of the C_(f)/B_(4)C-C preform.It is indicated that the inhomogeneous infiltration can be mitigated remarkably with increasing porosity and pore size of the preform.The effect of pore size on the RMI process was also investigated by a quantitative model,which agrees very well with the experiment results.It further indicates that the inhomogeneous infiltration can also be relieved at elevated RMI temperature.However,excessive infiltration at elevated temperature or more porous preform may cause serious erosion on interphase and fibers,leading to mechanical properties deterioration of the final composites. 展开更多
关键词 Reactive melt infiltration(RMI) Inhomogeneous infiltration Pore structures Mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部