Abundant fluid-melt inc1usions are found in the aegirine-augite-barite pegmatite andcarbonatite veins in the Mianning REE deposit, Sichuan. They were trapped in early stage flu-orite and quartz from a salt-melt system...Abundant fluid-melt inc1usions are found in the aegirine-augite-barite pegmatite andcarbonatite veins in the Mianning REE deposit, Sichuan. They were trapped in early stage flu-orite and quartz from a salt-melt system at temperatures higher than 500℃. Meanwhile, fluidinclusions are also present in large amounts in bastnaesite. Homogenized between 150 and270℃, these inclusions are thought to be representative of the physiccrchemical conditions ofREE minera1ization. These results show that the Mianning REE deposit is of tyPical hy-drothermal origin developed from a salt-melt system.展开更多
Due to the unique structure of perovskite materials,their capacitance can be improved by introducing oxygen vacancy.In this paper,the LaMnO3-δ material containing oxygen vacancy was synthesized by molten salt method ...Due to the unique structure of perovskite materials,their capacitance can be improved by introducing oxygen vacancy.In this paper,the LaMnO3-δ material containing oxygen vacancy was synthesized by molten salt method in KNO3-NaNO3-NaNO2 melt.The La-Mn-O crystal grows gradually in molten salt with the increase of temperature.It was confirmed that LaMnO3-δ with perovskite structure and incomplete oxygen content were synthesized by molten salt method and presented a three-dimensional shape.LaMnO3-δ stores energy by redox reaction and adsorption of OH-in electrolyte simultaneously.In comparison with the stoichiometric LaMnO3 prepared by the sol-gel method,LaMnO3-δ prepared by molten salt method proffered higher capacitance and better performance.The galvanostatic charge-discharge curve showed specific capacitance of 973.5 F/g under current density of 1 A/g in 6 M KOH.The capacitance of LaMn03-δ was 82.7%under condition of 5 A/g compared with the capacitance at the current of 1A/g,and the specific capacitances of 648.0 and 310.0 F/g were obtained after 2000 and 5000 cycles of galvanostatic charging-discharging,respectively.Molten salt synthesis method is relatively simple and suitable for industrial scale,presenting a promising prospect in the synthesis of perovskite oxide materials.展开更多
Aluminum silicon titanium master alloys were prepared in the laboratory by electrolysis of silica and titania dissolved in cryolite alumina melts. Alloys containing up to 12 mass% Si and 2.6 mass% Ti were formed af...Aluminum silicon titanium master alloys were prepared in the laboratory by electrolysis of silica and titania dissolved in cryolite alumina melts. Alloys containing up to 12 mass% Si and 2.6 mass% Ti were formed after about 90 min of electrolysis at 950℃. The current efficiency for the preparation of the Al Si Ti alloys varied with time, temperature and cathodic current density. It is concluded that this electrolytic method may be an interesting alternative to the direct metal mixing process for formation of Al Si Ti master alloys.展开更多
文摘Abundant fluid-melt inc1usions are found in the aegirine-augite-barite pegmatite andcarbonatite veins in the Mianning REE deposit, Sichuan. They were trapped in early stage flu-orite and quartz from a salt-melt system at temperatures higher than 500℃. Meanwhile, fluidinclusions are also present in large amounts in bastnaesite. Homogenized between 150 and270℃, these inclusions are thought to be representative of the physiccrchemical conditions ofREE minera1ization. These results show that the Mianning REE deposit is of tyPical hy-drothermal origin developed from a salt-melt system.
基金financially supported by the China Scholarship Council,the National Natural Science Foundation of China(21976047,21790373 and 51774104)the Fundamental Research funds for the Central Universities(3072019CF1005)+1 种基金the Scientific Research and Special Foundation Heilongjiang Postdoctoral Science Foundation(LBH-Q15019,LBH-Q15020 and LBH-TZ0411)Ph.D.Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities(3072019GIP1011)。
文摘Due to the unique structure of perovskite materials,their capacitance can be improved by introducing oxygen vacancy.In this paper,the LaMnO3-δ material containing oxygen vacancy was synthesized by molten salt method in KNO3-NaNO3-NaNO2 melt.The La-Mn-O crystal grows gradually in molten salt with the increase of temperature.It was confirmed that LaMnO3-δ with perovskite structure and incomplete oxygen content were synthesized by molten salt method and presented a three-dimensional shape.LaMnO3-δ stores energy by redox reaction and adsorption of OH-in electrolyte simultaneously.In comparison with the stoichiometric LaMnO3 prepared by the sol-gel method,LaMnO3-δ prepared by molten salt method proffered higher capacitance and better performance.The galvanostatic charge-discharge curve showed specific capacitance of 973.5 F/g under current density of 1 A/g in 6 M KOH.The capacitance of LaMn03-δ was 82.7%under condition of 5 A/g compared with the capacitance at the current of 1A/g,and the specific capacitances of 648.0 and 310.0 F/g were obtained after 2000 and 5000 cycles of galvanostatic charging-discharging,respectively.Molten salt synthesis method is relatively simple and suitable for industrial scale,presenting a promising prospect in the synthesis of perovskite oxide materials.
文摘Aluminum silicon titanium master alloys were prepared in the laboratory by electrolysis of silica and titania dissolved in cryolite alumina melts. Alloys containing up to 12 mass% Si and 2.6 mass% Ti were formed after about 90 min of electrolysis at 950℃. The current efficiency for the preparation of the Al Si Ti alloys varied with time, temperature and cathodic current density. It is concluded that this electrolytic method may be an interesting alternative to the direct metal mixing process for formation of Al Si Ti master alloys.