A transparent phase-pure anatase TiO2 nanofilm was prepared through magnetron sputtering method,and a subsequent annealing treatment awarded it the superhydrophilic characteristic.To make clear the mechanism of the he...A transparent phase-pure anatase TiO2 nanofilm was prepared through magnetron sputtering method,and a subsequent annealing treatment awarded it the superhydrophilic characteristic.To make clear the mechanism of the heat-induced superhydrophilicity,the chemical composition and surface morphology of the film were investigated in detail and compared before and after the annealing treatment mainly by field emission scanning electron microscopy(FESEM),X-ray diffraction method(XRD),Raman spectroscopy,and X-ray photoelectron spectroscope(XPS).The results suggest that the probable mechanism is in accordance with the UV-induced mechanism,where the heat-induced surface oxygen vacancies and hydroxyl radicals play important roles for achieving the superhydrophilicity.展开更多
基金The project was supported by the National Key Basic Research Program of China(973)(2012CB720100)National Natural Science Foundation of China(20973124)~~
基金National Nature Science Foundation of China(50705094)
文摘A transparent phase-pure anatase TiO2 nanofilm was prepared through magnetron sputtering method,and a subsequent annealing treatment awarded it the superhydrophilic characteristic.To make clear the mechanism of the heat-induced superhydrophilicity,the chemical composition and surface morphology of the film were investigated in detail and compared before and after the annealing treatment mainly by field emission scanning electron microscopy(FESEM),X-ray diffraction method(XRD),Raman spectroscopy,and X-ray photoelectron spectroscope(XPS).The results suggest that the probable mechanism is in accordance with the UV-induced mechanism,where the heat-induced surface oxygen vacancies and hydroxyl radicals play important roles for achieving the superhydrophilicity.