This study is for investigating the direct electro-deoxidation of mixed TiO2-Mn02 powder to prepare TiMn2 alloy in molten calcium chloride. The influences of process parameters, such as sintering temperature, cell vol...This study is for investigating the direct electro-deoxidation of mixed TiO2-Mn02 powder to prepare TiMn2 alloy in molten calcium chloride. The influences of process parameters, such as sintering temperature, cell voltage, and electrolysis time, on the electrolysis process were examined to investigate the mechanism of alloy formation. The composition and morphology of the products were analyzed by XRD and SEM, respectively. The electrochemical property of TiMn2 alloy was investigated by cyclic voltammetry measurements. The results show that pure TiMn2 can be prepared by direct electrochemical reduction of mixed TiO2/Mn02 pellets at a voltage of 3.1 V in molten calcium chloride of 900 ℃ for 7 h. The electro-deoxidation proceeds from the reduction of manganese oxides to Mn, which is reduced by Ti02 or CaTiOB to form TiMn2 alloy. The cyclic voltammetry measurements using pow- der microelectTode show that the prepared TiMn2 alloy has good electrochemical hydrogen storage property.展开更多
基金Supported by the National Natural Science Foundation of China(51201058)the Natural Science Foundation of Hebei Province(E2014209009)
文摘This study is for investigating the direct electro-deoxidation of mixed TiO2-Mn02 powder to prepare TiMn2 alloy in molten calcium chloride. The influences of process parameters, such as sintering temperature, cell voltage, and electrolysis time, on the electrolysis process were examined to investigate the mechanism of alloy formation. The composition and morphology of the products were analyzed by XRD and SEM, respectively. The electrochemical property of TiMn2 alloy was investigated by cyclic voltammetry measurements. The results show that pure TiMn2 can be prepared by direct electrochemical reduction of mixed TiO2/Mn02 pellets at a voltage of 3.1 V in molten calcium chloride of 900 ℃ for 7 h. The electro-deoxidation proceeds from the reduction of manganese oxides to Mn, which is reduced by Ti02 or CaTiOB to form TiMn2 alloy. The cyclic voltammetry measurements using pow- der microelectTode show that the prepared TiMn2 alloy has good electrochemical hydrogen storage property.