期刊文献+
共找到25,516篇文章
< 1 2 250 >
每页显示 20 50 100
Interplay of laser power and pore characteristics in selective laser melting of ZK60 magnesium alloys:A study based on in-situ monitoring and image analysis
1
作者 Weijie Xie Hau-Chung Man Chi-Wai Chan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1346-1366,共21页
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis... This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys. 展开更多
关键词 Selective laser melting(slm) Magnesium(Mg)alloys Biodegradable implants POROSITY In-situ monitoring
下载PDF
Experimental Study on Wire Melting Control Ability of Twin-Body Plasma Arc
2
作者 Ruiying Zhang Fan Jiang Long Xue 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期184-194,共11页
The twin-body plasma arc has the decoupling control ability of heat transfer and mass transfer,which is beneficial to shape and property control in wire arc additive manufacturing.In this paper,with the wire feeding s... The twin-body plasma arc has the decoupling control ability of heat transfer and mass transfer,which is beneficial to shape and property control in wire arc additive manufacturing.In this paper,with the wire feeding speed as a characteristic quantity,the wire melting control ability of twin-body plasma arc was studied by adjusting the current separation ratio(under the condition of a constant total current),the wire current/main current and the position of the wire in the arc axial direction.The results showed that under the premise that the total current remains unchanged(100 A),as the current separation ratio increased,the middle and minimum melting amounts increased approximately synchronously under the effect of anode effect power,the first melting mass range remained constant;the maximum melting amount increased twice as fast as the middle melting amount under the effect of the wire feeding speed,and the second melting mass range was expanded.When the wire current increased,the anode effect power and the plasma arc power were both factors causing the increase in the wire melting amount;however,when the main current increased,the plasma arc power was the only factor causing the increase in the wire melting amount.The average wire melting increment caused by the anode effect power was approximately 2.7 times that caused by the plasma arc power.The minimum melting amount was not affected by the wire-torch distance under any current separation ratio tested.When the current separation ratio increased and reached a threshold,the middle melting amount remained constant with increasing wire-torch distance.When the current separation ratio continued to increase and reached the next threshold,the maximum melting amount remained constant with the increasing wire-torch distance.The effect of the wire-torch distance on the wire melting amount reduced with the increase in the current separation ratio.Through this study,the decoupling mechanism and ability of this innovative arc heat source is more clearly. 展开更多
关键词 Twin-body plasma arc melting control ability melting amount Current separation ratio
下载PDF
Stability and melting behavior of boron phosphide under high pressure
3
作者 梁文嘉 向晓君 +2 位作者 李倩 梁浩 彭放 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期579-584,共6页
Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and s... Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope.The phase diagram of BP was explored in both B-rich and P-rich environments,revealing crucial insight into its behavior at 5.0 GPa.Additionally,we measured the melting curve of BP from 8.0 GPa to 15.0 GPa.Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments.Furthermore,we report a remarkable observation of melting curve frustration at 10.0 GPa.This study will enhance our understanding of stability of BP under high pressure,shedding light on its potential application in semiconductor,thermal,and light-transmitting devices. 展开更多
关键词 boron phosphide STABILITY melting curve high pressure
下载PDF
Effects of projectile parameters on the momentum transfer and projectile melting during hypervelocity impact
4
作者 Wenjin Liu Qingming Zhang +6 位作者 Renrong Long Zizheng Gong Ren Jiankang Xin Hu Siyuan Ren Qiang Wu Guangming Song 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期89-103,共15页
The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation resul... The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection. 展开更多
关键词 Hypervelocity impact Energy partitioning Impact melting Momentum transfer
下载PDF
Melting geodynamics reveals a subduction origin for the Purang ophiolite,Tibet,China
5
作者 Tao Ruan Zhong-Jie Bai +1 位作者 Wei-Guang Zhu Shi-Ji Zheng 《Acta Geochimica》 EI CAS CSCD 2024年第4期754-773,共20页
The debate regarding whether the Yarlung-Zangbo ophiolite(YZO)on the south of the Qinghai-Tibet Plateau,formed in a mid-ocean ridge(MOR)or a supra-subduction zone(SSZ)setting has remained unresolved.Here we present pe... The debate regarding whether the Yarlung-Zangbo ophiolite(YZO)on the south of the Qinghai-Tibet Plateau,formed in a mid-ocean ridge(MOR)or a supra-subduction zone(SSZ)setting has remained unresolved.Here we present petrological,mineralogical,and geochemical data associated with modeling melting geodynamics of the mantle peridotites from the Purang ophiolite in the western segment of the Yarlung-Zangbo Suture Zone(YZSZ)to explore its tectonic environment.The Purang lherzolites are characterized by the protogranular texture and have abyssal-peridotite-like mineral compositions,including low Cr^(#)(20-30)and TiO_(2) contents(<0.1wt%)in spinel,high Al_(2)O_(3)(2.9wt%-4.4wt%)and CaO(1.9wt%-3.7wt%)contents in orthopyroxene and LREE-depletion in clinopyroxene.Compositions of these lherzolites can be modeled by~11%dynamic melting of the DMM source with a small fraction of melt(~0.5%)entrapped within the source,a similar melting process to typical abyssal peridotites.The Purang harzburgites are characterized by the porphyroclastic texture and exhibit highly refractory mineral compositions such as high spinel Cr^(#)(40-68),low orthopyroxene Al_(2)O_(3)(<2.2wt%)and CaO(<1.1wt%)contents.Clinopyroxenes in these harzburgites are enriched in Sr(up to 6.0 ppm)and LREE[(Ce)N=0.02-0.4],but depleted in Ti(200 ppm,on average)and HREE[(Yb)N<2].Importantly,the more depleted samples tend to have higher clinopyroxene Sr and LREE contents.These observations indicate an open-system hydrous melting with a continuous influx of slab fluid at a subduction zone.The modeled results show that these harzburgites could be formed by 19%-23%hydrous melting with the supply rate of slab fluid at 0.1%-1%.The lower clinopyroxene V/Sc ratios in harzburgites than those in lherzolites suggest a high oxidation stage of the melting system of harzburgites,which is consistent with a hydrous melting environment for these harzburgites.It is therefore concluded that the Purang ophiolite has experienced a transformation of tectonic setting from MOR to SSZ. 展开更多
关键词 melting geodynamics SSZ peridotites MOR peridotites CLINOPYROXENE Purang ophiolite
下载PDF
Selective Laser Melting of Novel SiC and TiC Strengthen 7075 Aluminum Powders for Anti-Cracks Application
6
作者 Yingjie Li Hanlin Liao 《Journal of Materials Science and Chemical Engineering》 2024年第4期136-142,共7页
The aerospace and military sectors have widely used AA7075, a type of 7075 aluminum alloy, due to its exceptional mechanical performance. Selective laser melting (SLM) is a highly effective method for producing intric... The aerospace and military sectors have widely used AA7075, a type of 7075 aluminum alloy, due to its exceptional mechanical performance. Selective laser melting (SLM) is a highly effective method for producing intricate metallic components, particularly in the case of aluminum alloys like Al-Si-Mg. Nevertheless, the production of high-strength AA7075 by SLM is challenging because of its susceptibility to heat cracking and elemental vaporization. In this study, AA7075 powders were mechanically mixed with SiC and TiC particles. Subsequently, this new type of AA7075 powder was effectively utilized in green laser printing to create solid components with fine-grain strengthening microstructures consisting of equiaxial grains. These as-printed parts exhibit a tensile strength of up to 350 MPa and a ductility exceeding 2.1%. Hardness also increases with the increasing content of mixed powder, highlighting the essential role of SiC and TiC in SLM for improved hardness and tensile strength performance. . 展开更多
关键词 Selective Laser melting (slm) AA 7075 Fine Grain Strengthen TiC SIC Green Laser
下载PDF
热处理工艺对SLM打印波纹管耐撞性影响
7
作者 姚曙光 余小龙 +2 位作者 黄冲 许平 周亿莉 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期1931-1939,共9页
为了获得稳定的轴对称变形模式和较好的耐撞性,设计轴向轮廓为正弦曲线的薄壁锥形波纹管。采用SLM制备AlSi10Mg合金试样和波纹管,并进行拉伸实验和波纹管轴向压溃实验,采用实验和数值仿真研究退火、固溶和T6热处理对波纹管轴向压缩下耐... 为了获得稳定的轴对称变形模式和较好的耐撞性,设计轴向轮廓为正弦曲线的薄壁锥形波纹管。采用SLM制备AlSi10Mg合金试样和波纹管,并进行拉伸实验和波纹管轴向压溃实验,采用实验和数值仿真研究退火、固溶和T6热处理对波纹管轴向压缩下耐撞性的影响。研究结果表明:265℃退火热处理后,波纹管在静压下出现裂纹失效,与未热处理相比,AlSi10Mg合金试样经T6热处理后伸长率由4.7%提升至13.8%,拉伸强度由413.2 MPa降低至135.3 MPa。波纹管压溃力波动范围随伸长率增加而减小。经265℃、2 h退火处理后,波纹管峰值力达到最大为7.11 kN,压溃力波动幅值最大,压溃力效率为65.9%。经T6热处理后,波纹管峰值力降到最小,为4.75 kN,压溃力波动为所有波纹管中最小,吸能量最少,为279.12 J。与T6热处理相比,经295℃、3 h退火热处理后,波纹管平均压溃力达到5.09 kN,提升了16%,吸能量达到最大,为341.24 J,提升了18.5%。为了提升SLM打印的波纹管耐撞击性能,热处理工艺需要在保证伸长率的同时尽量提高材料强度。 展开更多
关键词 波纹管 slm打印 热处理 耐撞性
下载PDF
WE43镁合金SLM成形数值模拟及试验验证
8
作者 门正兴 王亮 +4 位作者 李坤 陈雯 吉辰 李子澈 屈仁春 《精密成形工程》 北大核心 2024年第4期138-146,共9页
目的研究WE43镁合金激光选区熔化(SLM)成形过程、成形后变形及应力分布的变化规律,得到SLM态WE43常温拉伸力学模型。方法采用SLM方法制备了WE43镁合金悬臂梁及拉伸试样,通过对比悬臂梁局部切割翘曲试验结果与数值模拟结果,得到WE43镁合... 目的研究WE43镁合金激光选区熔化(SLM)成形过程、成形后变形及应力分布的变化规律,得到SLM态WE43常温拉伸力学模型。方法采用SLM方法制备了WE43镁合金悬臂梁及拉伸试样,通过对比悬臂梁局部切割翘曲试验结果与数值模拟结果,得到WE43镁合金固有应变模型,实现WE43镁合金SLM成形过程的模拟及变形预测;对SLM态WE43镁合金开展拉伸试验,使用金相显微镜及扫描电镜进行微观组织及断口形貌观察;采用Normalized Cockcroft&Latham模型对拉伸试验进行模拟,实现SLM态WE43常温拉伸过程分析。结论常温SLM态WE43的抗拉强度为313 MPa,屈服强度为236 MPa,延伸率为7.6%,试样中存在不规则孔洞缺陷;在SLM成形过程中,WE43镁合金固有应变值exx、eyy、ezz分别为−0.0025、−0.0025、−0.0115,悬臂梁最大翘曲高度为1.99 mm,模拟结果显示未切割悬臂梁最大等效应力为12.3 MPa;当NC&L断裂准则临界损伤值为0.1时,WE43常温拉伸过程模拟结果与试验结果最为接近,预测准确率为93%。 展开更多
关键词 WE43 激光选区熔化 固有应变 数值模拟
下载PDF
SLM成形IN738LC合金的微动磨损行为及磨损机理
9
作者 胡勇 张旭 +2 位作者 贾慧斌 王少辉 柴利强 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第4期1393-1404,共12页
本文通过高精度微动摩擦磨损试验机(SRV-V),以球/平面点接触模式对选区激光熔化(SLM)技术制备的IN738LC合金进行切向微动磨损实验,系统研究了恒定载荷条件下(50 N),不同位移幅值(50、100、150、200μm)试样的微动磨损行为及其磨损机理... 本文通过高精度微动摩擦磨损试验机(SRV-V),以球/平面点接触模式对选区激光熔化(SLM)技术制备的IN738LC合金进行切向微动磨损实验,系统研究了恒定载荷条件下(50 N),不同位移幅值(50、100、150、200μm)试样的微动磨损行为及其磨损机理。结果表明:随着位移幅值增加,试样的摩擦因数和磨损体积逐渐增大,微动磨损运行状态由混合区逐渐转变为完全滑移区,50μm试样的磨损机理为轻微氧化磨损和疲劳磨损,200μm试样的磨损机理转变为氧化磨损、疲劳磨损和磨粒磨损。此外,磨痕中的微裂纹分布强烈依赖于微动区类型,即微裂纹出现在黏着区域和滑移区域的交界位置及完全滑移区域内。由于磨痕边缘存在犁削作用,磨痕形状由圆形变为椭圆形。 展开更多
关键词 选区激光熔化 IN738LC合金 微动磨损 位移幅值 磨损机理
下载PDF
基于离散元法的SLM刮刀倾角对粉末铺展行为的影响研究
10
作者 李雯 刘其鹏 +3 位作者 高月华 楚锡华 张昭 王振军 《力学学报》 EI CAS CSCD 北大核心 2024年第3期774-784,共11页
刮刀倾角对选区激光熔化过程粉末铺展行为有重要影响.基于离散元法建立铺粉数值模型,对不同刮刀倾角的铺粉过程及粉层质量进行模拟研究.针对不同的刮刀倾角,提出一个量化指标对粉层铺展的致密度和均匀性进行综合评估,获得刮刀倾角对粉... 刮刀倾角对选区激光熔化过程粉末铺展行为有重要影响.基于离散元法建立铺粉数值模型,对不同刮刀倾角的铺粉过程及粉层质量进行模拟研究.针对不同的刮刀倾角,提出一个量化指标对粉层铺展的致密度和均匀性进行综合评估,获得刮刀倾角对粉层质量的影响规律.根据颗粒分布及运动特征将粉堆颗粒体系划分为底层区、斜坡区、刮刀影响区和内部区4个区域.针对各区域进行铺粉过程动力学机理的深入研究,包括颗粒运动轨迹和速度场、刮刀前方剪切带、颗粒间力链分布及演化等.研究发现:刮刀倾角小于0时,颗粒体系难以形成完整的环流运动,剪切带较小,流向沉积层的颗粒较少,颗粒间强力链较少,刮刀间隙前方易形成力拱导致颗粒堵塞,进而形成空斑使得沉积层的致密度和均匀性较低.刮刀倾角大于0时,颗粒体系的环流运动较充分,剪切带较大,流向沉积层的颗粒增多,随倾角增大强力链增多,刮刀压实作用增强,有利于沉积层致密度和均匀性的提高.本研究为优化工艺参数、提高粉层沉积质量提供了理论基础. 展开更多
关键词 选区激光熔化 离散单元法 铺粉过程 刮刀倾角 流动机理
下载PDF
选择性激光熔化成形(SLM)增材制造重熔次数对316L构件表面粗糙度及磨损性能的影响
11
作者 李强 刘送永 王庆阳 《中国表面工程》 EI CAS CSCD 北大核心 2024年第2期170-181,共12页
重熔次数对选择性激光熔化增材制造构件表面粗糙度及耐磨性能有重要影响,研究其影响机理及确定经济重熔次数对发展选择性激光熔化增材制造技术具有重要意义。采用选择性激光熔化增材制造设备制备316L样件,在样件制备过程中分组进行0、1... 重熔次数对选择性激光熔化增材制造构件表面粗糙度及耐磨性能有重要影响,研究其影响机理及确定经济重熔次数对发展选择性激光熔化增材制造技术具有重要意义。采用选择性激光熔化增材制造设备制备316L样件,在样件制备过程中分组进行0、1、2、3次激光重熔,对不同激光重熔次数下的样件表面利用三维轮廓扫描仪、扫描电子显微镜等进行表征,利用高速往复摩擦磨损试验机对样件进行摩擦磨损试验,利用电子分析天平测定磨损前后的质量,对表征及磨损性能进行分析。结果表明:SLM增材制造样件表面粗糙度随重熔次数的增加而逐渐减小,重熔后的平均表面粗糙度Sa、Sq、Sv、Sz值分别从0次重熔(正常打印)的8.437、11.88、82.68、252.2μm降低到三次重熔的6.18、7.735、37.597、104.36μm,分别降低26.75%、34.89%、54.53%、58.62%;随重熔次数的增加,平均摩擦因数逐渐增大,质量磨损量逐步减小;2、3次重熔样件在磨损试验的后半段瞬时最大摩擦因数出现了大于1的情况,这是由于在明显滑动之前出现“接点增长”,接点面积不断增大,致使摩擦力超过正压力。表面粗糙度及摩损性能出现上述变化的原因是,每次重熔会使表面吸附的粉末颗粒及熔接痕进一步融化融陷,直至消失,相邻熔道搭接处的“峰谷”现象得到抑制,孔隙和球化等缺陷逐渐被修复,表面变得更加平整。研究发现不同重熔次数对表面粗糙度和磨损改变的程度不同;定义了经济重熔次数概念,1、2、3次重熔次数对表面粗糙度和摩擦磨损性能综合改变率分别为ζ_(1)=26.61%、ζ_(2)=43.60%、ζ_(3)=23.68%,确定了经济重熔次数为2;根据研究成果,给出经济重熔次数在矿山机械上的应用实例。提出经济重熔次数概念,并给出经济重熔次数的应用实例,可为提高增材制造构件表面质量和耐磨性能提供新思路。 展开更多
关键词 slm增材制造 316L 重熔次数 表面粗糙度 质量磨损 摩擦因数
下载PDF
The long-lived partial melting of the Greater Himalayas in southern Tibet, constraints from the Miocene Gyirong anatectic pegmatite and its prospecting potential for rare element minerals 被引量:3
12
作者 Hua-wen Cao Qiu-ming Pei +6 位作者 Xiao Yu Ai-bin Cao Yong Chen Hang Liu Kai Zhang Xin Liu Xiang-fei Zhang 《China Geology》 CAS CSCD 2023年第2期303-321,I0004-I0015,共31页
The Cenozoic Himalayan leucogranite-pegmatite belt has been a hotspot for rare metal exploration in recent years.To determine the genesis of the pegmatite in the Himalayan region and its relationship with the Greater ... The Cenozoic Himalayan leucogranite-pegmatite belt has been a hotspot for rare metal exploration in recent years.To determine the genesis of the pegmatite in the Himalayan region and its relationship with the Greater Himalayan Crystalline Complex(GHC),the Gyirong pegmatite in southern Tibet was chosen for geochronological and geochemical studies.The dating analyses indicate that the U-Th-Pb ages of zircon,monazite,and xenotime exhibit large variations(38.6‒16.1 Ma),with the weighted average value of the four youngest points is 16.5±0.3 Ma,which indicates that the final stage of crystallization of the melt occurred in the Miocene.The age of the muscovite Ar-Ar inverse isochron is 15.2±0.4 Ma,which is slightly later than the intrusion age,showing that a cooling process associated with rapid denudation occurred at 16‒15 Ma.TheεHf(t)values of the Cenozoic anatectic zircons cluster between−12 and−9 with an average of−11.4.The Gyirong pegmatite shows high contents of Si,Al,and K,a high Al saturation index,and low contents of Na,Ca,Fe,Mn,P,Mg,and Ti.Overall,the Gyirong pegmatite is enriched in Rb,Cs,U,K,Th and Pb and depleted in Nb,Ta,Zr,Ti,Eu,Sr,and Ba.The samples show a high 87Sr/86Sr(16 Ma)ratio of ca.0.762 and a lowεNd(16 Ma)value of−16.0.The calculated average initial values of 208Pb/204Pb(16 Ma),207Pb/204Pb(16 Ma)and 206Pb/204Pb(16 Ma)of the whole rock are 39.72,15.79 and 19.56,respectively.The Sr-Nd-Pb-Hf isotopic characteristics of the Gyirong pegmatite are consistent with those of the GHC.This study concludes that the Gyirong pegmatite represents a typical crustal‒derived anatectic pegmatite with low metallogenic potential for rare metals.The Gyirong pegmatite records the long‒term metamorphism and partial melting process of the GHC,and reflects the crustal thickening caused by thrust compression at 39‒29 Ma and the crustal thinning induced by extensional decompression during 28‒15 Ma. 展开更多
关键词 Partial melting of magma Anatectic pegmatite Zircon-monazite-xenotime U‒Pb dating Sr-Nd-Pb isotopes Greater Himalayan crystalline complex Mineral exploration engineering Gyirong Tibet
下载PDF
Petrogenesis of the Late Eocene to Early Oligocene Yao'an Shoshonitic Complex,Southeastern Tibet:Partial Melting of an Ancient Continental Lithospheric Mantle beneath the Yangtze Block 被引量:2
13
作者 DONG Mengmeng YANG Tiannan +3 位作者 XUE Chuandong XIN Di LIANG Mingjuan YAN Qinggao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第6期1657-1670,共14页
Cenozoic potassic-ultrapotassic igneous rocks are widespread in the southeastern Tibetan Plateau.Their petrogenesis and magmatic processes remain subject to debate in spite of numerous publications.Almost all of the C... Cenozoic potassic-ultrapotassic igneous rocks are widespread in the southeastern Tibetan Plateau.Their petrogenesis and magmatic processes remain subject to debate in spite of numerous publications.Almost all of the Cenozoic extrusive and intrusive rocks in the Yao’an area,western Yunnan Province,SW China,are geochemically shoshonitic,collectively termed here the Yao’an Shoshonitic Complex(YSC).The YSC is located in the(south)easternmost part of the ENE-WSW-trending,~550 km-long and~250 km-wide Cenozoic magmatic zone;the latter separates the orthogonal and oblique collision belts of the India-Eurasia collision orogen.Previously published geochronological and thermochronological data revealed that the rocks of the YSC were emplaced over a short timespan of 34-32 Ma.This and our new data suggest that the primary magma of the YSC likely was formed by partial melting of ancient continental lithospheric mantle beneath the Yangtze Block.This part of the continental lithospheric mantle had likely not been modified by any oceanic subduction.Fractionation crystallization of an Mg-and Ca-bearing mineral and TiFe oxides during the magmatic evolution probably account for the variable lithologies of the YSC. 展开更多
关键词 Ancient continental lithospheric mantle Partial melting Yao’an Shoshonitic Complex Late Eocene to early Oligocene SE Tibetan Plateau
下载PDF
Effects of heat input on layer heterogeneity of selective laser melting Ti-6Al-4V components 被引量:1
14
作者 陈昌荣 刘畅 +4 位作者 王乾廷 练国富 黄旭 冯美艳 戴继成 《China Welding》 CAS 2023年第3期51-66,共16页
Due to the layer-by-layer manufacturing characteristics,metallurgical process of selective laser melting(SLM)is inherently dif-ferent in the building direction because of varying conditions,thereby resulting inter-lay... Due to the layer-by-layer manufacturing characteristics,metallurgical process of selective laser melting(SLM)is inherently dif-ferent in the building direction because of varying conditions,thereby resulting inter-layer heterogeneity.To mitigate such anisotropy,it is of great significance to understand the effects of processing parameters on the property evolution and thus metallurgy of fabrication process.This research proposes one-factor-at-a-time experiment to investigate the influences of laser power and scanning speed on the surface qual-ity,microstructures and mechanical properties of selective laser melted Ti-6Al-4V parts.Surface quality is assessed by roughness around the printings while mechanical properties are evaluated through microhardness and tensile strengths.Phases in microstructure are quantified by XRD to correlate with mechanical properties.Fracture morphology is analyzed to understand the effect of defects and microstructure on mechanical performance.The optimized parameter corresponding to best surface quality and mechanical properties has been found respect-ively in laser power of 190 W and scanning speed of 800 mm/s.After optimization,surface roughness has decreased by 44.47%for upper surface.Yielding strength,tensile strength and elongation rate have improved by 13.17%,43.34%and 64.51%,respectively,with similar hardness and Young’s modulus.In addition,heterogeneity of mechanical properties has great improvement by a range of 31.63%-92.68%. 展开更多
关键词 selective laser melting TI-6AL-4V inter-layer heterogeneity tensile properties heat input
下载PDF
The Processes-Based Attributes of Four Major Surface Melting Events over the Antarctic Ross Ice Shelf 被引量:1
15
作者 Wenyi LI Yuting WU Xiaoming HU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第9期1662-1670,共9页
The Ross-Amundsen sector is experiencing an accelerating warming trend and a more intensive advective influx of marine air streams.As a result,massive surface melting events of the ice shelf are occurring more frequen... The Ross-Amundsen sector is experiencing an accelerating warming trend and a more intensive advective influx of marine air streams.As a result,massive surface melting events of the ice shelf are occurring more frequently,which puts the West Antarctica Ice Sheet at greater risk of degradation.This study shows the connection between surface melting and the prominent intrusion of warm and humid air flows from lower latitudes.By applying the Climate Feedback-Response Analysis Method(CFRAM),the temporal surge of the downward longwave(LW)fluxes over the surface of the Ross Ice Shelf(RIS)and adjacent regions are identified for four historically massive RIS surface melting events.The melting events are decomposed to identify which physical mechanisms are the main contributors.We found that intrusions of warm and humid airflow from lower latitudes are conducive to warm air temperature and water vapor anomalies,as well as cloud development.These changes exert a combined impact on the abnormal enhancement of the downward LW surface radiative fluxes,significantly contributing to surface warming and the resultant massive melting of ice. 展开更多
关键词 Ross Ice Shelf(RIS) surface melting warm and humid air advection downward longwave radiation Climate Feedback-Response Analysis Method(CFRAM)
下载PDF
Design and Manufacture of Bionic Porous Titanium Alloy Spinal Implant Based on Selective Laser Melting(SLM) 被引量:2
16
作者 Xiaojun Chen Di Wang +4 位作者 Wenhao Dou Yimeng Wang Yongqiang Yang Jianhua Wang Jie Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第9期1099-1117,共19页
In order to meet the clinical requirements of spine surgery,this paper proposed the exploratory research of computer-aided design and selective laser melting(SLM)fabrication of a bionic porous titanium spine implant.T... In order to meet the clinical requirements of spine surgery,this paper proposed the exploratory research of computer-aided design and selective laser melting(SLM)fabrication of a bionic porous titanium spine implant.The structural design of the spinal implant is based on CT scanning data to ensure correct matching,and the mechanical properties of the implant are verified by simulation analysis and laser selective melting experiment.The surface roughness of the spinal implant manufactured by SLM without post-processing is Ra 15μm,and the implant is precisely jointed with the photosensitive resin model of the upper and lower spine.The surface micro-hardness of the implant is HV 373,tensile strengthσ_(b)=1238.7 MPa,yield strengthσ_(0.2)=1043.9 MPa,the elongation is 6.43%,and the compressive strength of porous structure under 84.60%porosity is 184.09 MPa,which can meet the requirements of the reconstruction of stable spines.Compared with the traditional implant and intervertebral fusion cage,the bionic porous spinal implant has the advantages of accurate fit,porous bionic structure and recovery of patients,and the ion release experiment proved that implants manufactured by SLM are more suitable for clinical application after certain treatments.The elastic modulus of the sample is improved after heat treatment,mainly because the microstructure of the sample changes fromα’phase toα+βdual-phase after heat treatment.In addition,the design of high-quality bionic porous spinal implants still needs to be optimized for the actual needs of doctors. 展开更多
关键词 Selective laser melting(slm) titanium spinal implant bionic porous
下载PDF
Microstructure,Properties and Crack Suppression Mechanism of High-speed Steel Fabricated by Selective Laser Melting at Different Process Parameters
17
作者 Wenbin Ji Chuncheng Liu +1 位作者 Shijie Dai Riqing Deng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期91-105,共15页
To enrich material types applied to additive manufacturing and enlarge application scope of additive manufacturing in conformal cooling tools,M2 high-speed steel specimens were fabricated by selective laser melting(SL... To enrich material types applied to additive manufacturing and enlarge application scope of additive manufacturing in conformal cooling tools,M2 high-speed steel specimens were fabricated by selective laser melting(SLM).Effects of SLM parameters on the microstructure and mechanical properties of M2 high-speed steel were investigated.The results showed that substrate temperature and energy density had significant influence on the densification process of materials and defects control.Models to evaluate the effect of substrate temperature and energy density on hardness were studied.The optimized process parameters,laser power,scan speed,scan distance,and substrate temperature,for fabricated M2 are 220 W,960 mm/s,0.06 mm,and 200℃,respectively.Based on this,the hardness and tensile strength reached 60 HRC and 1000 MPa,respectively.Interlaminar crack formation and suppression mechanism and the relationship between temperature gradient and thermal stress were illustrated.The inhibition effect of substrate temperature on the cracks generated by residual stresses was also explained.AM showed great application potential in the field of special conformal cooling cutting tool preparation. 展开更多
关键词 Selective laser melting High-speed steel Mechanical properties MICROSTRUCTURE Interlaminar cracks
下载PDF
Influence of heat treatments on incipient melting structures of DD5 nickel-based single crystal superalloy
18
作者 Zhi-hong Jia Chen-yang Li +4 位作者 Wen-xiang Jing Xiang-feng Liang Ze-kun Zhang Jia-le Xiao Yu-tao Zhao 《China Foundry》 SCIE CAS CSCD 2023年第5期395-402,共8页
The evolution of microstructure and formation mechanism of incipient melting microstructure of DD5 single crystal superalloy during solution heat treatment were studied by scanning electron microscopy(SEM),electron pr... The evolution of microstructure and formation mechanism of incipient melting microstructure of DD5 single crystal superalloy during solution heat treatment were studied by scanning electron microscopy(SEM),electron probe microanalysis(EPMA),and energy dispersive spectroscopy(EDS).The solidus and liquidus of single crystal alloy were obtained by differential scanning calorimetry(DSC).Results show that the mosaic-like eutectic and fan-like eutectic are dissolved at first,and the coarseγ'phase is dissolved later during the solution heat treatment of 1,390°C/2 h+1,310°C/4 h+1,320°C/10 h+air cooling(AC).The composition segregations of Al,Ta,W and Re are 0.99,0.96,1.04 and 1.16,respectively,which close to 1.The incipient melting is caused by the low local temperature of the alloy,and the micropore region with a lower melting point is the preferred position for incipient melting. 展开更多
关键词 SUPERALLOY solution heat treatment EUTECTIC composition segregation incipient melting
下载PDF
Surface Integrity of Inconel 738LC Parts Manufactured by Selective Laser Melting Followed by High-speed Milling
19
作者 Guanhui Ren Sai Guo Bi Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期65-79,共15页
This study is concerned with the surface integrity of Inconel 738LC parts manufactured by selective laser melting(SLM)followed by high-speed milling(HSM).In the investigation process of surface integrity,the study emp... This study is concerned with the surface integrity of Inconel 738LC parts manufactured by selective laser melting(SLM)followed by high-speed milling(HSM).In the investigation process of surface integrity,the study employs ultradepth three-dimensional microscopy,laser scanning confocal microscopy,scanning electron microscopy,electron backscatter diffractometry,and energy dispersive spectroscopy to characterize the evolution of material microstructure,work hardening,residual stress coupling,and anisotropic effect of the building direction on surface integrity of the samples.The results show that SLM/HSM hybrid manufacturing can be an effective method to obtain better surface quality with a thinner machining metamorphic layer.High-speed machining is adopted to reduce cutting force and suppress machining heat,which is an effective way to produce better surface mechanical properties during the SLM/HSM hybrid manufacturing process.In general,high-speed milling of the SLM-built Inconel 738LC samples offers better surface integrity,compared to simplex additive manufacturing or casting. 展开更多
关键词 Surface integrity Inconel 738LC Selective laser melting High-speed milling
下载PDF
Metallurgical properties of CaO–SiO_(2)–Al_(2)O_(3)–4.6wt%MgO–Fe_(2)O_(3)slag system pertaining to spent automotive catalyst smelting
20
作者 Ruili Zheng Jianfang Lü +5 位作者 Weifeng Song Mudan Liu Huashan Li Yong Liu Xianjin Lü Zhiyuan Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期886-896,共11页
The metallurgical properties of the CaO–SiO_(2)–Al_(2)O_(3)–4.6wt%Mg O–Fe_(2)O_(3)slag system,formed by the co-treatment process of spent automotive catalyst(SAC)and copper-bearing electroplating sludge(CBES),were... The metallurgical properties of the CaO–SiO_(2)–Al_(2)O_(3)–4.6wt%Mg O–Fe_(2)O_(3)slag system,formed by the co-treatment process of spent automotive catalyst(SAC)and copper-bearing electroplating sludge(CBES),were studied systematically in this paper.The slag structure,melting temperature,and viscous characteristics were investigated by Fourier transform infrared(FTIR)spectroscopy,Raman spectroscopy,Fact Sage calculation,and viscosity measurements.Experimental results show that the increase of Fe_(2)O_(3)content(3.8wt%–16.6wt%),the mass ratio of CaO/SiO_(2)(m(CaO)/m(SiO_(2)),0.5–1.3),and the mass ratio of SiO_(2)/Al_(2)O_(3)(m(SiO_(2))/m(Al_(2)O_(3)),1.0–5.0)can promote the depolymerization of silicate network,and the presence of a large amount of Fe_(2)O_(3)in form of tetrahedral and octahedral units ensures the charge compensation of Al^(3+)ions and makes Al_(2)O_(3)only behave as an acid oxide.Thermodynamic calculation and viscosity measurements show that with the increase of Fe_(2)O_(3)content,m(Ca O)/m(SiO_(2)),and m(SiO_(2))/m(Al_(2)O_(3)),the depolymerization of silicate network structure and low-melting-point phase transformation first occur within the slag,leading to the decrease in melting point and viscosity of the slag,while further increase causes the formation of high-melting-point phase and a resultant re-increase in viscosity and melting point.Based on experimental analysis,the preferred slag composition with low polymerization degree,viscosity,and melting point is as follows:Fe_(2)O_(3)content of 10.2wt%–13.4wt%,m(CaO)/m(SiO_(2))of 0.7–0.9 and m(SiO_(2))/m(Al_(2)O_(3))of 3.0–4.0.This work provides a theoretical support for slag design in co-smelting process of SAC and CBES. 展开更多
关键词 spent automotive catalyst co-treatment slag system slag structure melting temperature phase transformation VISCOSITY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部