期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Major ions and trace metals in glacial meltwaters nearby Ny-Ålesund, Svalbard
1
作者 Zhan Shen Liping Ye +2 位作者 Jing Zhang Hongmei Ma Ruifeng Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第10期86-99,共14页
Ny-Ålesund,located in Arctic Svalbard,is one of the most sensitive areas on Earth to global warming.In recent years,accelerated glacier ablation has become remarkable in Ny-Ålesund.Glacial meltwaters dischar... Ny-Ålesund,located in Arctic Svalbard,is one of the most sensitive areas on Earth to global warming.In recent years,accelerated glacier ablation has become remarkable in Ny-Ålesund.Glacial meltwaters discharge a substantial quantity of materials to the ocean,affecting downstream ecosystems and adjacent oceans.In August 2015,various water samples were taken near Ny-Ålesund,including ice marginal meltwater,proglacial meltwater,supraglacial meltwater,englacial meltwater,and groundwater.Trace metals(Al,Cr,Mn,Fe,Co,Cu,Zn,Cd,and Pb),major ions,alkalinity,pH,dissolved oxygen,water temperature and electric conductivity were also measured.Major ions were mainly controlled by chemical weathering intensity and reaction types,while trace metals were influenced by both chemical weathering and physicochemical control upon their mobility.Indeed,we found that Brøggerbreen was dominated by carbonate weathering via carbonation of carbonate,while Austre Lovénbreen and Pedersenbreen were dominated by sulfide oxidation coupled with carbonate dissolution with a doubled silicate weathering.The higher enrichment of trace metals in supraglacial meltwater compared to ice marginal and proglacial meltwater suggested anthropogenic pollution from atmospheric deposition.In ice marginal and proglacial meltwater,principal component analysis indicated that trace metals like Cr,Al,Co,Mn and Cd were correlated to chemical weathering.This implies that under accelerated glacier retreat,glacier-derived chemical components are subjected to future changes in weathering types and intensity. 展开更多
关键词 Arctic glacial meltwater WEATHERING major ions trace metals
下载PDF
GLACIER MELTWATER RUNOFF IN CHINA AND ITS NOURISHMENT TO RIVER 被引量:5
2
作者 杨针娘 《Chinese Geographical Science》 SCIE CSCD 1995年第1期66-76,共11页
Alpine glaciers are the natural solid reservoirs that releases amount of meltwater to supply streams every year. Glacier meltwater, adjuSting the yearly variation of stream runoff and making it trend to wards stablen... Alpine glaciers are the natural solid reservoirs that releases amount of meltwater to supply streams every year. Glacier meltwater, adjuSting the yearly variation of stream runoff and making it trend to wards stableness, becomes the relible water resourc 展开更多
关键词 GLACIER meltwater RUNOFF specific GLACIER MELT RUNOFF
下载PDF
Bacterial community diversity of meltwater runoff and soil in Midre Lovénbreen glacier in Ny-Alesund,Arctic
3
作者 LIN Lidong WANG Nengfei +7 位作者 HAN Wenbing ZHANG Botao ZANGJiaye LI Qinxin QIN Yiling WANG Long ZHANG Fang LIU Jie 《Advances in Polar Science》 CSCD 2022年第2期167-180,共14页
Glacial meltwater runoff is a dynamic ecosystem.On the one hand,nutrient concentration changes as it flows from upstream to downstream,and on the other hand,bacterial community structure changes due to its contact wit... Glacial meltwater runoff is a dynamic ecosystem.On the one hand,nutrient concentration changes as it flows from upstream to downstream,and on the other hand,bacterial community structure changes due to its contact with nearby soil during the flow process.We studied meltwater and soil in the Midre Lovénbreen glacier region,to explore changes in bacterial diversity as meltwater flows,and the relationship between meltwater and soil bacterial diversity.As glacial meltwater flows from upstream to downstream,the relative abundance of dominant bacterial groups changes.In addition,we found that during the flowing process,nutrient exchange and bacterial contact had occurred between the meltwater runoff and the soil.As a result,the distribution patterns of some bacteria in the meltwater are very similar to those in the soil.Finally,we combined distance-based redundancy analysis and weighted correlation network analysis to show that NO_(3)^(-)-N and NO_(2)^(-)-N are the most two significant factors affecting glacial meltwater and soil,respectively.Our results suggest that in such a close-knit ecosystem,the interaction of glacial meltwater with soil,as well as environmental factors,together determine bacterial community composition. 展开更多
关键词 ARCTIC glacier meltwater bacterial diversity high-throughput sequencing
下载PDF
Glacial meltwater and sea ice meltwater in the Prydz Bay, Antarctica 被引量:1
4
作者 蔡平河 黄奕普 +5 位作者 陈敏 刘广山 邱雨生 陈性保 金德秋 周锡煌 《Science China Earth Sciences》 SCIE EI CAS 2003年第1期50-61,共12页
Measurements of d D and salinity were carried out in the Prydz Bay during two Antarctic cruises, the 13th and the 14th Chinese National Antarctic Research expeditions (CHINARE). Mass balance calculations based on d D ... Measurements of d D and salinity were carried out in the Prydz Bay during two Antarctic cruises, the 13th and the 14th Chinese National Antarctic Research expeditions (CHINARE). Mass balance calculations based on d D and salinity showed that during the 13th CHINARE cruise, per- centages of glacial meltwater and sea ice meltwater in the study region ranged from 0% to 3.82% and from 3.19% to 4.78%, respectively. Meanwhile, the percentages were 1.53%—3.98% and 3.80%—4.52% during the 14th CHINARE cruise. We depicted plots showing the horizontal dis- tributions of glacial meltwater and sea ice meltwater, and found a footprint of Circumpolar Deep Water (CDW), which may suggest a strong upwelling in this regime. We also noticed a butterfly- like image in the plot, which resulted from two adjacent water masses. It is interesting to note that the butterfly-like image deflected anticlockwise with depth. We suggested that the cause of the deflection could be due to Ekman effect. Depth profiles of glacial meltwater within the Prydz Bay were fundamentally uniform, revealing that inflow of glacial meltwater to the basin was a slower process with respect to the vertical mixing in the water column. Nevertheless, percentage of sea ice meltwater decreased steadily with depth, presumably due to the effect of seasonal cycle of sea ice production. 展开更多
关键词 glacial meltwater sea ice meltwater d D ANTARCTICA Prydz Bay.
原文传递
Experimental study on the effects of multiple factors on spring meltwater erosion on an alpine meadow slope 被引量:3
5
作者 Xiaonan Shi Fan Zhang +4 位作者 Li Wang Muhammad Dodo Jagirani Chen Zeng Xiong Xiao Guanxing Wang 《International Soil and Water Conservation Research》 SCIE CSCD 2020年第2期116-123,共8页
Meadow degradation provides a major indication of increased soil erosion in alpine regions.Serious soil erosion is observed during the spring in particular because soil thawing coincides with the period of snowmelt an... Meadow degradation provides a major indication of increased soil erosion in alpine regions.Serious soil erosion is observed during the spring in particular because soil thawing coincides with the period of snowmelt and the meadow coverage is very low at this time.Studies relating to soil erosion caused by spring meltwater are,however,limited and controversial.Therefore,a field experimental study was conducted in a typical meadow in the Binggou watershed on the northern edge of the Tibetan Plateau to assess the impact of multiple factors on spring meltwater erosion on an alpine meadow slope.The multiple factors included three flow rates(1,2,and 3 L/min),four slope gradients(10°,15°,20°,and 25°),and three underlying surface conditions(meadow,disturbed meadow,and alluvial soil).An equal volume of concentrated meltwater flow was used in all experiments.The results showed that rapid melting at a high flow rate could accelerate soil erosion;as the flow rate increased from 1 to 3 L/min,the total surface runoff increased by a factor of 0.7 and the total sediment yield increased by more than 6-fold.The in-fluence of the slope gradient on the amount of runoff was positively linear and the influence was relatively low;when the slope increased from 10°to 25°,the total runoff only increased by 16%.However,the slope gradient had a strong impact on soil erosion.The total sediment yield doubled when the slope increased from 10°to 20°and then slightly decreased at 25°.The meadow could effectively reduce soil erosion,although when the meadow was disturbed,the total runoff increased by 60%and the sediment yield by a factor of 1.5.The total runoff from the alluvial soil doubled in comparison to the meadow,while the sediment yield increased nearly 7-fold.The findings of this study could be helpful to understand the characteristics and impact of multiple controlling factors of spring meltwater erosion.It also aims to provide a scientific basis for an improved management of alpine meadows as well as water and soil conservation activities in high-altitude cold regions. 展开更多
关键词 meltwater erosion Alpine meadow Slope erosion Impact factors
原文传递
Glacier meltwater runoff process analysis using δD and δ^(18)O isotope and chemistry at the remote Laohugou glacier basin in western Qilian Mountains, China 被引量:1
6
作者 王彩霞 董志文 +3 位作者 秦翔 张杰 杜文涛 吴锦奎 《Journal of Geographical Sciences》 SCIE CSCD 2016年第6期722-734,共13页
Stable hydrogen and oxygen isotope has important implication on water and mois- ture transportation tracing research. Based on stable hydrogen (6D) and oxygen (6180) isotope using a Picarro Ll102-i and water chemi... Stable hydrogen and oxygen isotope has important implication on water and mois- ture transportation tracing research. Based on stable hydrogen (6D) and oxygen (6180) isotope using a Picarro Ll102-i and water chemistry (e.g. major ions, pH, EC and TDS) meas- urement, this study discussed the temporal variation and characteristics of stable hydrogen and oxygen isotope, chemistry (e.g. TDS, pH, EC, Ca^2^, Mg2+, Na^+ and CI) in various water bodies including glacier meltwater runoff, ice and snow, and precipitation at the Laohugou g^acier basin during June 2012 to September 2013. Results showed that 6D and δ18O in the meltwater runoff varied obviously with the temporal change from June to September, showing firstly increasing trend and then decreasing trend, with the highest values in July with high air temperature and strong glacier melting, which could indicate the temporal change of glacier melting process and extent. Variations of 6D and δ18O in the runoff were similar with that of snow and ice on the glacier, and the values were also above the GMWL, which probably im- plied that the glacier runoff was mainly originated from glacier melting and precipitation supply The glacier meltwater chemical type at the Laohugou glacier basin were mainly composed by Ca-Na-HCO3-SO4 and Ca-Mg-HCO3-SO4, which also varied evidently with the glacier melting process in summer. By analyzing the temporal change of stable hydrogen and oxygen isotope and chemistry in the melting period, we find it is easy to separate the components of the snow and ice, atmospheric precipitation and melt-runoff in the river, which could reflect the change process of glacier melting during the melting period, and thus this work can contribute to the glacier runoff change study of large-scale region by stable isotope and geochemical method in future. 展开更多
关键词 meltwater runoff stable hydrogen and oxygen isotope CHEMISTRY runoff process
原文传递
Impact of climate change on the streamflow in the glacierized Chu River Basin, Central Asia 被引量:8
7
作者 MA Changkun SUN Lin +2 位作者 LIU Shiyin SHAO Ming'an LUO Yi 《Journal of Arid Land》 SCIE CSCD 2015年第4期501-513,共13页
Catchments dominated by meltwater runoff are sensitive to climate change as changes in precipitation and temperature inevitably affect the characteristics of glaciermelt/snowmelt, hydrologic circle and water resources... Catchments dominated by meltwater runoff are sensitive to climate change as changes in precipitation and temperature inevitably affect the characteristics of glaciermelt/snowmelt, hydrologic circle and water resources. This study simulated the impact of climate change on the runoff generation and streamflow of Chu River Basin (CRB), a glacierized basin in Central Asia using the enhanced Soil and Water Assessment Tool (SWAT). The model was calibrated and validated using the measured monthly streamflow data from three discharge gauge stations in CRB for the period 1961-1985 and was subsequently driven by downscaled future climate projections of five Global Circulation Models (GCMs) in Coupled Model Inter-comparison Project Phase 5 (CMIP5) under three radiative forcing scenarios (RCP2.6, RCP4.5 and RCP8.5). In this study, the period 1966-1995 was used as the baseline period, while 2016-2045 and 2066-2095 as the near-future and far-future period, respectively. As projected, the climate would become warmer and drier under all scenarios in the future, and the future climate would be characterized by larger seasonal and annual variations under higher RCP. A general decreasing trend was identi- fied in the average annual runoff in glacier (-26.6% to -1.0%), snow (-21.4% to +1.1%) and streamflow (-27.7% to -6.6%) for most of the future scenario periods. The projected maximum streamflow in each of the two future scenarios occurred one month earlier than that in the baseline period because of the reduced streamflow in summer months. Results of this study are expected to arouse the serious concern about water resource availability in the headwater region of CRB under the continuously warming climate. Changes in simulated hydrologic outputs underscored the significance of lowering the uncertainties in temperature and precipitation projection. 展开更多
关键词 GLACIER SNOW meltwater runoff climate change hydrologic modeling
下载PDF
Quantitative analysis of Arctic ice flow acceleration with increasing temperature 被引量:6
8
作者 Zemin Wang Boya Yan +3 位作者 Songtao Ai Kim Holmén Jiachun An Hongmei Ma 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第1期22-32,共11页
This study explores the ice flow acceleration(21.1%)of Pedersenbreen during 2016–2017 after the extremely warm winter throughout the whole Arctic in 2015/2016 using in situ data and quantitatively analyses the factor... This study explores the ice flow acceleration(21.1%)of Pedersenbreen during 2016–2017 after the extremely warm winter throughout the whole Arctic in 2015/2016 using in situ data and quantitatively analyses the factors contributing to this acceleration.Several data sets,including 2008–2018 air temperature data from Ny-?lesund,ten-year in situ GPS measurements and Elmer/Ice ice flow modelling under different ice temperature scenarios,suggest that the following factors contributed to the ice flow acceleration:the softened glacier ice caused by an increase in the air temperature(1.5℃)contributed 2.7%–30.5%,while basal lubrication contributed 69.5%–97.3%.The enhanced basal sliding was mostly due to the increased surface meltwater penetrating to the bedrock under the rising air temperature conditions;consequently,the glacier ice flow acceleration was caused mainly by an increase in subglacial water.For Pedersenbreen,there was an approximately one-year time lag between the change in air temperature and the change in glacier ice flow velocity. 展开更多
关键词 ice flow velocity Arctic temperature rising Pedersenbreen Elmer/Ice meltwater
下载PDF
Variation of freshwater components in the Canada Basin during 1967–2010 被引量:4
9
作者 PAN Hong CHEN Min +3 位作者 TONG Jinlu QIU Yusheng ZHENG Minfang CAO Jianping 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第6期40-45,共6页
As a conservative tracer, oxygen isotopes in seawater are widely used for water mass analysis, along with temperature and salinity. In this study, seawater oxygen-18 datasets in the Canada Basin during 1967-2010 were ... As a conservative tracer, oxygen isotopes in seawater are widely used for water mass analysis, along with temperature and salinity. In this study, seawater oxygen-18 datasets in the Canada Basin during 1967-2010 were obtained from the four cruises of the Chinese National Arctic Research Expedition (1999, 2003, 2008, and 2010) and the NASA database. Fractions of sea ice meltwater and river runoffwere determined from the salinity-5180 system. Our results showed that the river runoff decreased from the south to the north in the Canada Basin. The enhanced amount of river runoff observed in the southern Canada Basin may originate from the Mackenzie River, transported by the Beaufort Gyre. The river runoff component showed maximum fractions during 1967-1969, 1978-1979, 1984-1985, 1993-1994, and 2008-2010, indicating the refresh time of the river runoffwas 5.0-16.0 a in the Canada Basin. The temporal variation of the river runoffwas related to the change of the Arctic Oscillation (AO) index, suggesting the freshwater stored in the Canada Basin was affected by surface sea ice drift and water mass movement driven by atmospheric circulation. 展开更多
关键词 Canada Basin FRESHWATER river runoff sea ice meltwater oxygen isotope
下载PDF
Preliminary Results on Hydrological and Hydrochemical Features of Kartamak Glacier Area in Mt. Muztag Ata 被引量:5
10
作者 ZHAO Huabiao YAO Tandong XU Baiqing 《Journal of Mountain Science》 SCIE CSCD 2007年第1期77-85,共9页
The variations of the meltwater runoff draining from Kartamak Glacier in Mt. Muztag Ata in China were studied by using the measured hydrological data from 1 June to 25 August 2003. The meltwater runoff is mainly affec... The variations of the meltwater runoff draining from Kartamak Glacier in Mt. Muztag Ata in China were studied by using the measured hydrological data from 1 June to 25 August 2003. The meltwater runoff is mainly affected by ambient temperature and precipitation. Meltwater and precipitation samples were collected from 10 to 23 August 2003. Their pH, EC (electric conductivity) and the major ions (Na^+, K^+, Ca^(2+), Mg^(2+), Cl^-, NO_3^-, SO_~4^(2-)) were determined. pH values showed a positive correlation with EC values for all samples. Meltwater samples were slightly alkaline. Sulfate and calcium were the dominant anion and cation in the measured ions, respectively. All the ion concentrations had inverse relationships with runoff or water level. In order to discuss the origins of dissolved chemical substances in the glacial meltwater, a principal component analysis was carried out. The results showed that water-rock interaction determined the ion components of the meltwater. 展开更多
关键词 Muztag Ata Kartamak Glacier meltwater runoff Hydrochemical characteristics
下载PDF
Regimes of Runoff Components on the Debris-covered Koxkar Glacier in Western China 被引量:3
11
作者 HAN Hai-dong DING Yong-jian +1 位作者 LIU Shi-yin WANG Jian 《Journal of Mountain Science》 SCIE CSCD 2015年第2期313-329,共17页
By using a degree-day based distributed hydrological model, regimes of glacial runoff from the Koxkar glacier during 2007-2011 are simulated, and variations and characteristics of major hydrological components are dis... By using a degree-day based distributed hydrological model, regimes of glacial runoff from the Koxkar glacier during 2007-2011 are simulated, and variations and characteristics of major hydrological components are discussed. The results show that the meltwater runoff contributes 67.4%, of the proglacial discharge, out of which snowmelt, clean ice melting, buried-ice ablation and ice-cliff backwasting account for 22.4%, 21.9%, 17.9% and 5.3% of the total melt runoff, respectively. Rainfall runoff is significant in mid-latitude glacierized mountain areas like Tianshan and Karakorum. In the Koxkar glacier catchment, about 11.5% of stream water is initiated from liquid precipitation. Spatial distributions for each glacial runoff component reveal the importance of climatic gradients, local topography and morphology on glacial runoff generation, and temporal variations of these components is closely related to the annual cycle of catchment meteorology and glacier storage. Four stages are recognized in the seasonal variations of glacier storage, reflecting changes in meltwater yields, meteorological conditions and drainage systems in the annual hydrological cycle. 展开更多
关键词 Debris cover meltwater GLACIER Koxkar RUNOFF
下载PDF
The transport of chemical components in homogeneous snowpacks on Urumqi Glacier No.1, eastern Tianshan Mountains, Central Asia 被引量:3
12
作者 YOU Xiaoni LI Zhongqin +1 位作者 Ross EDWARDS WANG Lixia 《Journal of Arid Land》 SCIE CSCD 2015年第5期612-622,共11页
Chemical records from alpine ice cores provide an invaluable source of paleoclimatic and environ- mental information. Not only the atmospheric chemical composition but also depositional and post-depositional processes... Chemical records from alpine ice cores provide an invaluable source of paleoclimatic and environ- mental information. Not only the atmospheric chemical composition but also depositional and post-depositional processes are recorded within snow/tim strata. To interpret the environmental and climatic significance of ice core records, we studied the variability of glacier snowpack chemistry by investigating homogeneous snowpacks from October 2003 to September 2006 on Urumqi Glacier No. 1 in eastern Tianshan Mountains, Central Asia. Principle Component Analysis of ionic species in dry and wet seasons revealed the impact of meltwater in redistributing ions in the snowpacks. The 1st, 2nd and 3rd principle components for dry seasons differ significantly, reflecting complex associations between depositional or/and post-depositional processes. The variability trend of ionic concentrations during the wet seasons was found to fit a Gauss Function with significant parameters. The elution factor revealed that more than half of ions are leached out during the wet seasons. Differences with respect to ion snowpack mo- bility were found. Of the ions studied SO42- was the most mobile and Mg2+ the least mobile. A threshold relationship between air temperatures and the elution process was investigated over the study period. The results indicate that the strong melt/ablation processes and iconic redistribution occur at a threshold air temperature of 0℃. The study found that surface melt on the snowpacks is the main factor causing the alteration of the snowpack chemistry. Rainfall also has an impact on the chemistry but plays a less significant role than the surface melt. 展开更多
关键词 Urumqi Glacier No. 1 SNOWPACK meltwater air temperature precipitation
下载PDF
Lake water storage change estimation and its linkage with terrestrial water storage change in the northeastern Tibetan Plateau 被引量:1
13
作者 LI Ya-wei WANG Yu-zhe +1 位作者 XU Min KANG Shi-chang 《Journal of Mountain Science》 SCIE CSCD 2021年第7期1737-1747,共11页
Tibetan Plateau(TP) lakes are important water resources,which are experiencing quick expansion in recent decades.Previous researches mainly focus on analyzing the relationship between terrestrial water storage(TWS) ch... Tibetan Plateau(TP) lakes are important water resources,which are experiencing quick expansion in recent decades.Previous researches mainly focus on analyzing the relationship between terrestrial water storage(TWS) change and lake water storage(LWS) change in the total inner TP,it is still lack of researches about the spatial difference and the characteristic of sub-region in the inner TP.In this study,we estimated the area change of 34 lakes by using Landsat images in the northeastern TP during 1976–2013,and LWS change by using the Shuttle Radar Topography Mission(SRTM).The results suggested that LWS had shrunk from 1976 to 1994,and then expanded quickly until 2013.LWS had a serious decrease by 13.6 Gt during 1976–1994,and then it increased quickly by 35.4 Gt during 1994–2013.We estimated TWS change,soil moisture change,and permafrost degradation based on the satellite data and related models during 2003–2013.The results indicated that their changing rates were 1.86 Gt/y,0.22 Gt/y,and –0.19 Gt/y,respectively.We also calculated the change of groundwater based on the mass balance with a decreasing trend of –0.054 Gt/y.The results suggested that the cause of TWS change was the increase of LWS.We analyzed the cause of lake change according to water balance,and found that the primary cause of lake expansion was the increasing precipitation(80.7%),followed by glacier meltwater(10.3%) and permafrost degradation(9%).The spatial difference between LWS change and TWS change should be studied further,which is important to understand the driving mechanism of water resources change. 展开更多
关键词 Lake expansion GRACE Water storage change PRECIPITATION Glacier meltwater
下载PDF
Glacier mass balance and its impacts on streamflow in a typical inland river basin in the Tianshan Mountains, northwestern China 被引量:1
14
作者 PENG Jiajia LI Zhongqin +4 位作者 XU Liping MA Yuqing LI Hongliang ZHAO Weibo FAN Shuang 《Journal of Arid Land》 SCIE CSCD 2022年第4期455-472,共18页
Glaciers are known as natural ’’solid reservoirs’ ’, and they play a dual role between the composition of water resources and the river runoff regulation in arid and semi-arid areas of China. In this study, we use... Glaciers are known as natural ’’solid reservoirs’ ’, and they play a dual role between the composition of water resources and the river runoff regulation in arid and semi-arid areas of China. In this study, we used in situ observation data from Urumqi Glacier No. 1, Xinjiang Uygur Autonomous Region, in combination with meteorological data from stations and a digital elevation model, to develop a distributed degree-day model for glaciers in the Urumqi River Basin to simulate glacier mass balance processes and quantify their effect on streamflow during 1980–2020. The results indicate that the mass loss and the equilibrium line altitude(ELA) of glaciers in the last 41 years had an increasing trend, with the average mass balance and ELA being-0.85(±0.32) m w.e./a(meter water-equivalent per year) and 4188 m a.s.l., respectively. The glacier mass loss has increased significantly during 1999–2020, mostly due to the increase in temperature and the extension of ablation season. During 1980–2011, the average annual glacier meltwater runoff in the Urumqi River Basin was 0.48×108 m3, accounting for 18.56% of the total streamflow. We found that the annual streamflow in different catchments in the Urumqi River Basin had a strong response to the changes in glacier mass balance, especially from July to August, and the glacier meltwater runoff increased significantly. In summary, it is quite possible that the results of this research can provide a reference for the study of glacier water resources in glacier-recharged basins in arid and semi-arid areas. 展开更多
关键词 glacier mass balance glacier meltwater runoff glacier modelling Urumqi River Basin Tianshan Mountains
下载PDF
Summertime freshwater fractions in the surface water of the western Arctic Ocean evaluated from total alkalinity 被引量:2
15
作者 GAO Zhongyong SUN Heng +1 位作者 CHEN Liqi ZHANG Fan 《Advances in Polar Science》 2012年第2期95-102,共8页
As a quasi-conservative tracer, measures of total alkalinity (TA) can be utilized to trace the relative fractions of freshwater and seawater. In this study, based on the TA and related data collected during the thir... As a quasi-conservative tracer, measures of total alkalinity (TA) can be utilized to trace the relative fractions of freshwater and seawater. In this study, based on the TA and related data collected during the third Chinese National Arctic Research Expedition (JulySeptember 2008, 3rd CHINARE-Arctic) and the fourth Chinese National Arctic Research Expedition (JulySeptember 2010, 4th CH1NARE-Arctic), fractions of sea-ice meltwater, river runoff, and seawater within the surface water of the western Arctic Ocean were determined using salinil~~ and TA relationships. The largest fraction of seeL-ice meltwater was found around 75~N within the Canada Basin during both surveys, which is located at the ice edge. Generally, it was found that the frac- tion of river runoff was less than that of sea-ice meltwater. The river runoff, composed mainly of contributions from the Yukon River carried by Bering inflow water and the Mackenzie River, was influenced by the currents, leading to two peak areas of its fraction. Our results show that the dilution effect of freshwater carried by Bering inflow water during the 3rd CH1NARE-Arctic in 2008 expedition period may be stronger than that during the 4th CH1NARE-Arctic in 2010 expedition period. The peak area of sea-ice meltwater fraction during the 4th CH1NARE-Arctic was different from that of the 3rd CHINAR-E-Arctic, corresponding to their sea-ice condition. 展开更多
关键词 western Arctic Ocean total alkalinity freshwater fractions sea-ice meltwater ri^er
下载PDF
conomic losses from reduced freshwater under future climate scenarios: An example from the Urumqi River,Tianshan Mountains
16
作者 ZHANG Xueting CHEN Rensheng LIU Guohua 《Journal of Arid Land》 SCIE CSCD 2022年第2期139-153,共15页
As important freshwater resources in alpine basins,glaciers and snow cover tend to decline due to climate warming,thus affecting the amount of water available downstream and even regional economic development.However,... As important freshwater resources in alpine basins,glaciers and snow cover tend to decline due to climate warming,thus affecting the amount of water available downstream and even regional economic development.However,impact assessments of the economic losses caused by reductions in freshwater supply are quite limited.This study aims to project changes in glacier meltwater and snowmelt of the Urumqi River in the Tianshan Mountains under future climate change scenarios(RCP2.6(RCP,Representative Concentration Pathway),RCP4.5,and RCP8.5)by applying a hydrological model and estimate the economic losses from future meltwater reduction for industrial,agricultural,service,and domestic water uses combined with the present value method for the 2030 s,2050 s,2070 s,and 2090 s.The results indicate that total annual glacier meltwater and snowmelt will decrease by 65.6%and 74.5%under the RCP4.5 and RCP8.5 scenarios by the 2090 s relative to the baseline period(1980-2010),respectively.Compared to the RCP2.6 scenario,the projected economic loss values of total water use from reduced glacier meltwater and snowmelt under the RCP8.5 scenario will increase by 435.10×10^(6) and 537.20×10^(6) CNY in the 2050 s and 2090 s,respectively,and the cumulative economic loss value for 2099 is approximately 2124.00×10^(6) CNY.We also find that the industrial and agricultural sectors would likely face the largest and smallest economic losses,respectively.The economic loss value of snowmelt in different sectorial sectors is greater than that of glacier meltwater.These findings highlight the need for climate mitigation actions,industrial transformation,and rational water allocation to be considered in decision-making in the Tianshan Mountains in the future. 展开更多
关键词 glacier meltwater SNOWMELT freshwater supply water use economic losses future climate scenario climate change Tianshan Mountains
下载PDF
Field evidences showing rapid frontal degeneration of the Kangriz glacier,western Himalayas,Jammu&Kashmir
17
作者 GARG Siddhi SHUKLA Aparna +4 位作者 MEHTA Manish KUMAR Vinit SAMUEL Shruti Anna BARTARYA S.K. SHUKLA Uma Kant 《Journal of Mountain Science》 SCIE CSCD 2018年第6期1199-1208,共10页
Life cycle of glaciers in the Himalayan region has notably changed due to the climatic variability since last few decades. Glaciers across the world and specially the Himalayan glaciers have shown large scale degenera... Life cycle of glaciers in the Himalayan region has notably changed due to the climatic variability since last few decades. Glaciers across the world and specially the Himalayan glaciers have shown large scale degeneration in the last few decades. Himalayan glaciers serve as an important fresh water resource for the downstream communities, who are dependent on this water for domestic and other purposes. Therefore, glacier shrinkage and the associated hydrological changes pose a significant problem for regional-scale water budgets and resource management. These issues necessitate the regular and rigorous monitoring of the wastage pattern of the Himalayan glaciers in field and using satellite remote sensing data. In this work, we report rapid and enhanced degeneration of the frontal part of the Kangriz glacier, Jammu and Kashmir(J & K), in terms of surface melting, debris cover, snout characteristics and meltwater discharge. Ablation data acquired during 2016-2017 shows the average lowering of the frontal part of the glacier to be ~148 ± 34 cm, one-third of which was found to have occurred within a 13 day time period in September, 2017. Also, the quantum of ice melt was found to be inversely influenced(r =-0.84) by the debris thickness. 15 day meltwater discharge measurement revealed its strong relationship with snout disintegration pattern, evidenced twice during the said time period. Volume of water discharged from the glacier was estimated to be 7.91×10~6 m^3 for the measurement duration. Also, mean daily discharge estimated for the 15 days interval showed good positive correction(r = 0.78) with temperature indicating the direct dependency of the former on land surface temperature conditions of the region. Besides the lowering and discharge observations, the frequent ice-block break-offs at the glacier snout further enhance its overall drastic degeneration. The study suggests that, being the largest glacier in the Suru basin, the Kangriz glacier needs to be continuously monitored in order to understand its glacio-hydrological conditions. 展开更多
关键词 Glacier shrinkage Western Himalayas Surface lowering DEGENERATION meltwater discharge
下载PDF
Response of runoff and its components to climate change in the Manas River of the Tian Shan Mountains 被引量:2
18
作者 Ze-Long YANG Peng BAI 《Advances in Climate Change Research》 SCIE CSCD 2024年第1期62-74,共13页
A warming-wetting climate trend has led to increased runoff in most watersheds in the Tian Shan Mountains over the past few decades.However,it remains unclear how runoff components,that is,rainfall runoff(Rrain),snowm... A warming-wetting climate trend has led to increased runoff in most watersheds in the Tian Shan Mountains over the past few decades.However,it remains unclear how runoff components,that is,rainfall runoff(Rrain),snowmelt runoff(Rsnow),and glacier meltwater(Rglacier),responded to historical climate change and how they will evolve under future climate change scenarios.Here,we used a modified Hydrologiska Byrans Vattenbalansavdelning(HBV)model and a detrending method to quantify the impact of precipitation and temperature changes on runoff components in the largest river(Manas River)on the northern slope of the Tian Shan Mountains from 1982 to 2015.A multivariate calibration strategy,including snow cover,glacier area,and runoff was implemented to constrain model parameters associated with runoff components.The downscaled outputs of 12 general circulation models(GCMs)from the Sixth Coupled Model Intercomparison Project(CMIP6)were also used to force the modified HBV model to project the response of runoff and its components to future(2016-2100)climate change under three common socio-economic pathways(SSP126,SSP245,and SSP585).The results indicate that Rrain dominates mean annual runoff with a proportion of 42%,followed by Rsnow(37%)and Rglacier(21%).In terms of inter-annual variation,Rrain and Rsnow show increasing trends(0.93(p<0.05)and 0.31(p>0.05)mm per year),while Rglacier exhibits an insignificant(p>0.05)decreasing trend(-0.12 mm per year),leading to an increasing trend in total runoff(1.12 mm per year,p>0.05).The attribution analysis indicates that changes in precipitation and temperature contribute 8.16 and 10.37 mm,respectively,to the increase in runoff at the mean annual scale.Climate wetting(increased precipitation)increases Rrain(5.03 mm)and Rsnow(3.19 mm)but has a limited effect on Rglacier(-0.06 mm),while warming increases Rrain(10.69 mm)and Rglacier(5.79 mm)but decreases Rsnow(-6.12 mm).The negative effect of glacier shrinkage on Rglacier has outweighed the positive effect of warming on Rglaciers resulting in the tipping point(peak water)for Rglacier having passed.Runoff projections indicate that future decreases in Rglacier and Rsnow could be offset by increases in Rrain due to increased precipitation projections,reducing the risk of shortages of available water resources.However,management authorities still need to develop adequate adaptation strategies to cope with the continuing decline in Rgacier in the future,considering the large inter-annual fluctuations and high uncertainty in precipitation projection. 展开更多
关键词 Tian Shan Rainfall runoff Snowmelt runoff Glacier meltwater Warming-wetting Tipping point
原文传递
青藏高原冰芯记录揭示早-中全新世发生多次融水事件
19
作者 庞洪喜 张王滨 +3 位作者 吴霜叶 Theo M.Jenk Margit Schwikowski 侯书贵 《Science Bulletin》 SCIE EI CAS CSCD 2024年第3期375-381,共7页
Understanding the impact of meltwater discharge during the final stage of the Laurentide Ice Sheet(LIS)has important implications for predicting sea level rise and climate change.Here we present a highresolution ice-c... Understanding the impact of meltwater discharge during the final stage of the Laurentide Ice Sheet(LIS)has important implications for predicting sea level rise and climate change.Here we present a highresolution ice-core isotopic record from the central Tibetan Plateau(TP),where the climate is sensitive to the meltwater forcing,and explore possible signals of the climate response to potential LIS meltwater discharges in the early to mid-Holocene.The record shows four abrupt large fluctuations during the 7–9 ka BP(kiloannum before present),reflecting large shifts of the mid-latitude westerlies and the Indian summer monsoon(ISM)over this period,and they corresponded to possible LIS freshwater events documented in other paleoclimate records.Our study suggests that multiple rapid meltwater discharge events might have occurred during the final stage of LIS.The finding implies the possibility of rapid sea level rise and unstable climate in the transition zone between the mid-latitude westerlies and the ISM due to fast polar ice retreat under the anthropogenic global warming. 展开更多
关键词 Tibetan Plateau Ice core Water isotopes meltwater events Abrupt climate change
原文传递
Runoff components and the contributions of precipitation and temperature in a highly glacierized river basin in Central As 被引量:4
20
作者 Anqian WANG Buda SU +5 位作者 Jinlong HUANG Cheng JING Zbigniew WKUNDZEWICZ Hui TAO Mingjin ZHAN Tong JIANG 《Frontiers of Earth Science》 SCIE CSCD 2023年第2期361-377,共17页
Understanding the main drivers of runoff components and contributions of precipitation and temperature have important implications for water-limited inland basins,where snow and glacier melt provide essential inputs t... Understanding the main drivers of runoff components and contributions of precipitation and temperature have important implications for water-limited inland basins,where snow and glacier melt provide essential inputs to surface runoff.To quantify the impact of temperature and precipitation changes on river runoff in the Tarim River basin(TRB),the Hydrologiska Byrans Vattenbalansavdelning(HBV)-light model,which contains a glacier routine process,was applied to analyze the change in runoff composition.Runoff in the headstream parts of the TRB was more sensitive to temperature than to precipitation.In the TRB,overall,rainfall generated 41.22%of the total runoff,while snow and glacier meltwater generated 20.72%and 38.06%,respectively.These values indicate that temperature exerted more major effects on runoff than did precipitation.Runoff compositions were different in the various subbasins and may have been caused by different glacier coverages.The runoff volumes generated by rainfall,snowmelt,glacier melt was almost equal in the Aksu River subbasin.In the Yarkand and Hotan River subbasins,glacier meltwater was the main supplier of runoff,accounting for 46.72%and 58.73%,respectively.In the Kaidu-Kongque River subbasin,80.86%was fed by rainfall and 19.14%was fed by snowmelt.In the TRB,runoff generated by rainfall was the dominant component in spring,autumn,winter,while glacier melt runoff was the dominant component in summer.Runoff in the TRB significantly increased during 1961–2016;additionally,56.49%of the increase in runoff was contributed by temperature changes,and 43.51%was contributed by precipitation changes.In spring,the runoff increase in the TRB was mainly caused by the precipitation increase,opposite result in summer and autumn.Contribution of temperature was negative in winter.Our findings have important implications for water resource management in high mountainous regions and for similar river basins in which melting glaciers strongly impact the hydrological cycle. 展开更多
关键词 runoff components glacier meltwater CONTRIBUTION HBV-light model Tarim River basin
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部