期刊文献+
共找到4,901篇文章
< 1 2 246 >
每页显示 20 50 100
Towards high-performance and robust anion exchange membranes(AEMs)for water electrolysis:Super-acid-catalyzed synthesis of AEMs
1
作者 Geun Woong Ryoo Sun Hwa Park +3 位作者 Ki Chang Kwon Jong Hun Kang Ho Won Jang Min Sang Kwon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期478-510,I0012,共34页
The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen pro... The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen production technologies,anion exchange membrane water electrolyzer(AEMWE)has emerged as a next-generation technology known for its high hydrogen production efficiency and its ability to use non-metal catalysts.However,this technology faces significant challenges,particularly in terms of the membrane durability and low ionic conductivity.To address these challenges,research efforts have focused on developing membranes with a new backbone structure and anion exchange groups to enhance durability and ionic conductivity.Notably,the super-acid-catalyzed condensation(SACC)synthesis method stands out due to its user convenience,the ability to create high molecular weight(MW)polymers,and the use of oxygen-tolerant organic catalysts.Although the synthesis of anion exchange membranes(AEMs)using the SACC method began in 2015,and despite growing interest in this synthesis approach,there remains a scarcity of review papers focusing on AEMs synthesized using the SACC method.The review covers the basics of SACC synthesis,presents various polymers synthesized using this method,and summarizes the development of these polymers,particularly their building blocks including aryl,ketone,and anion exchange groups.We systematically describe the effects of changes in the molecular structure of each polymer component,conducted by various research groups,on the mechanical properties,conductivity,and operational stability of the membrane.This review will provide insights into the development of AEMs with superior performance and operational stability suitable for water electrolysis applications. 展开更多
关键词 Green hydrogen production water electrolysis Anion exchange membrane water electrolyzer(AEMWE) Anion exchange membranes(AEMs) Super-acid-catalyzed condensation(SACC)
下载PDF
Development of advanced anion exchange membrane from the view of the performance of water electrolysis cell
2
作者 Chao Liu Zhen Geng +6 位作者 Xukang Wang Wendong Liu Yuwei Wang Qihan Xia Wenbo Li Liming Jin Cunman Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期348-369,I0009,共23页
Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,t... Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed. 展开更多
关键词 HYDROGEN water electrolysis Anion exchange membrane Electrolysis cell
下载PDF
Electrochemical synthesis of trimetallic nickel-iron-copper nanoparticles via potential-cycling for high current density anion exchange membrane water-splitting applications
3
作者 Ziqi Zhang Sheng Wan +4 位作者 Hanbo Wang Jinghan He Ruige Zhang Yuhang Qi Haiyan Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期535-542,I0012,共9页
Hydrogen is known for its elevated energy density and environmental compatibility and is a promising alternative to fossil fuels.Alkaline water electrolysis utilizing renewable energy sources has emerged as a means to... Hydrogen is known for its elevated energy density and environmental compatibility and is a promising alternative to fossil fuels.Alkaline water electrolysis utilizing renewable energy sources has emerged as a means to obtain high-purity hydrogen.Nevertheless,electrocatalysts used in the process are fabricated using conventional wet chemical synthesis methods,such as sol-gel,hydrothermal,or surfactantassisted approaches,which often necessitate intricate pretreatment procedures and are vulnerable to post-treatment contamination.Therefore,this study introduces a streamlined and environmentally conscious one-step potential-cycling approach to generate a highly efficient trimetallic nickel-iron-copper electrocatalyst in situ on nickel foam.The synthesized material exhibited remarkable performance,requiring a mere 476 mV to drive electrochemical water splitting at 100 mA cm^(-2)current density in alkaline solution.Furthermore,this material was integrated into an anion exchange membrane watersplitting device and achieved an exceptionally high current density of 1 A cm^(-2)at a low cell voltage of2.13 V,outperforming the noble-metal benchmark(2.51 V).Additionally,ex situ characterizations were employed to detect transformations in the active sites during the catalytic process,revealing the structural transformations and providing inspiration for further design of electrocatalysts. 展开更多
关键词 Electrocatalytic water splitting Hydrogen evolution reaction Oxygen evolution reaction Electrochemical synthesis Anion exchange membrane
下载PDF
Electrochemical reconstruction of non-noble metal-based heterostructure nanorod arrays electrodes for highly stable anion exchange membrane seawater electrolysis
4
作者 Jingchen Na Hongmei Yu +7 位作者 Senyuan Jia Jun Chi Kaiqiu Lv Tongzhou Li Yun Zhao Yutong Zhao Haitao Zhang Zhigang Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期370-382,共13页
Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,par... Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,particularly the presence of aggressive Cl^(-),has been proven to be prone to parasitic chloride ion oxidation and corrosion reactions,thus restricting seawater electrolyzer lifetime.Herein,hierarchical structure(Ni,Fe)O(OH)@NiCoS nanorod arrays(NAs)catalysts with heterointerfaces and localized oxygen vacancies were synthesized at nickel foam substrates via the combination of hydrothermal and annealing methods to boost seawater dissociation.The hiera rchical nanostructure of NiCoS NAs enhanced electrode charge transfer rate and active surface area to accelerate oxygen evolution reaction(OER)and generated sulfate gradient layers to repulsive aggressive Cl^(-).The fabricated heterostructure and vacancies of(Ni,Fe)O(OH)tuned catalyst electronic structure into an electrophilic state to enhance the binding affinity of hydroxyl intermediates and facilitate the structural transformation into amorphousγ-NiFeOOH for promoting OER.Furthermore,through operando electrochemistry techniques,we found that theγ-NiFeOOH possessing an unsaturated coordination environment and lattice-oxygen-participated OER mechanism can minimize electrode Cl^(-)corrosion enabled by stabilizing the adsorption of OH*intermediates,making it one of the best OER catalysts in the seawater medium reported to date.Consequently,these catalysts can deliver current densities of 100 and 500 mA cm-2for boosting OER at minimal overpotentials of 245and 316 mV,respectively,and thus prevent chloride ion oxidation simultaneously.Impressively,a highly stable anion exchange membrane(AEM)seawater electrolyzer based on the non-noble metal heterostructure electrodes reached a record low degradation rate under 100μV h-1at constant industrial current densities of 400 and 600 mA cm-2over 300 h,which exhibits a promising future for the nonprecious and stable AEMWE in the direct seawater electrolysis industry. 展开更多
关键词 Direct seawater electrolysis Anion exchange membrane water ELECTROLYSIS Oxygen evolution reaction Oxygen vacancies Operando electrochemistry techniques
下载PDF
Influence of water vapor on the separation of volatile organic compound/nitrogen mixture by polydimethylsiloxane membrane
5
作者 Yifan Liang Haibo Lei +2 位作者 Xinlei He Haoli Zhou Wanqin Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期26-36,共11页
In the industrial treatment of waste volatile organic compound(VOC)streams by membrane technology,a third impurity,generally,water vapor,coexists in the mixture of VOC and nitrogen or air,and can affect membrane perfo... In the industrial treatment of waste volatile organic compound(VOC)streams by membrane technology,a third impurity,generally,water vapor,coexists in the mixture of VOC and nitrogen or air,and can affect membrane performance and the design of the industrial process.This study focused on the investigation of the effect of water vapor on the separation performance of the separation of VOC/water/nitrogen mixtures by a polydimethylsiloxane(PDMS)membrane.Three types of VOCs:water-miscible ethanol,water-semi-miscible butanol,and water-immiscible cyclohexane,were selected for the study.Different operating parameters including,concentration of the feed VOC,feed temperature,and concentration of the feed water were compared for the separation of binary and ternary VOC/nitrogen mixtures.The interaction between the VOC and water was analyzed to explain the transportation mechanism after analyzing the difference in the membrane performance for the separation of binary and ternary mixtures.The results indicated that the interaction between the VOC(or nitrogen)and water is the key factor affecting membrane performance.Water can promote the permeation of hydrophilic VOC but prevent hydrophobic VOC through the membrane for the separation of ternary VOC/water/nitrogen mixtures.These results will provide fundamental insights for the design of the recovery application process for industrial membrane-based VOCs,and also guidance for the investigation of the separation mechanism in vapor permeation. 展开更多
关键词 water vapor Ternary mixtures POLYDIMETHYLSILOXANE membranes PERMEABILITY SELECTIVITY
下载PDF
Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures
6
作者 Hammad Saulat Jianhua Yang +3 位作者 Tao Yan Waseem Raza Wensen Song Gaohong He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期242-252,共11页
Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of ... Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of gravity.W-MEL membranes were grown on stainless steel (SS) meshes through in-situ hydrothermal growth method facilitated with (3-aminopropyl)triethoxysilane (APTES) modification of stainless steel meshes,which promote the heterogeneous nucleation and crystal growth of W-MEL zeolites onto the mesh surface.W-MEL membranes were grown on different mesh size supports to investigate the effect of mesh size on the separation performance of the membrane.The assynthesized W-MEL membrane supported on 500 mesh (25μm)(W-MEL-500) exhibit the hydrophilic nature with a water contact angle of 11.8°and delivers the best hexane/water mixture separation with a water flux and separation efficiency of 46247 L·m^(-2)·h^(-1)and 99.5%,respectively.The wettability of W-MEL membranes was manipulated from hydrophilic to hydrophobic nature by chemically modifying with the fluorine-free compounds (hexadecyltrimethoxysilane (HDTMS) and dodecyltrimethoxysilane(DDTMS)) to achieve efficient oil-permselective separation of heavy oils from water.Among the hydrophobically modified W-MEL membranes,W-MEL-500-HDTMS having a water contact angle of146.4°delivers the best separation performance for dichloromethane/water mixtures with a constant oil flux and separation efficiency of 61490 L·m^(-2)·h^(-1)and 99.2%,respectively along with the stability tested up to 20 cycles.Both W-MEL-500-HDTMS and W-MEL-500-DDTMS membranes also exhibit similar separation performances for the separation of heavy oil from sea water along with a 20-fold lower corrosion rate in comparison with the bare stainless-steel mesh,indicating their excellent stability in seawater.Compared to the reported zeolite membranes for oil/water separation,the as-synthesized and hydrophobically modified W-MEL membranes shows competitive separation performances in terms of flux and separation efficiency,demonstrating the good potentiality for oil/water separation. 展开更多
关键词 Corrosion Dodecyltrimethoxysilane Hexadecyltrimethoxysilane membranes Oil/water separation ZEOLITE
下载PDF
Technical factors affecting the performance of anion exchange membrane water electrolyzer
7
作者 Xun Zhang Yakang Li +3 位作者 Wei Zhao Jiaxin Guo Pengfei Yin Tao Ling 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2259-2269,共11页
Anion exchange membrane(AEM)electrolysis is a promising membrane-based green hydrogen production technology.However,AEM electrolysis still remains in its infancy,and the performance of AEM electrolyzers is far behind ... Anion exchange membrane(AEM)electrolysis is a promising membrane-based green hydrogen production technology.However,AEM electrolysis still remains in its infancy,and the performance of AEM electrolyzers is far behind that of well-developed alkaline and proton exchange membrane electrolyzers.Therefore,breaking through the technical barriers of AEM electrolyzers is critical.On the basis of the analysis of the electrochemical performance tested in a single cell,electrochemical impedance spectroscopy,and the number of active sites,we evaluated the main technical factors that affect AEM electrolyzers.These factors included catalyst layer manufacturing(e.g.,catalyst,carbon black,and anionic ionomer)loadings,membrane electrode assembly,and testing conditions(e.g.,the KOH concentration in the electrolyte,electrolyte feeding mode,and operating temperature).The underlying mechanisms of the effects of these factors on AEM electrolyzer performance were also revealed.The irreversible voltage loss in the AEM electrolyzer was concluded to be mainly associated with the kinetics of the electrode reaction and the transport of electrons,ions,and gas-phase products involved in electrolysis.Based on the study results,the performance and stability of AEM electrolyzers were significantly improved. 展开更多
关键词 hydrogen production anion exchange membrane water electrolyzer CATALYST membrane electrode assembly
下载PDF
Facile fabrication of durable superhydrophobic fabrics by silicon polyurethane membrane for oil/water separation
8
作者 Taoyan Mao Runhui Xiao +5 位作者 Peng Liu Jiale Chen Junqiang Luo Su Luo Fengwei Xie Cheng Zheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期73-83,共11页
Nowadays, oil contamination has become a major reason for water pollution, and presents a global environmental challenge. Although many efforts have been devoted to the fabrication of oil/water separation materials, t... Nowadays, oil contamination has become a major reason for water pollution, and presents a global environmental challenge. Although many efforts have been devoted to the fabrication of oil/water separation materials, their practical applications are still hindered by their weak durability, poor chemical tolerance,environmental resistance, and potential negative impact on health and the environment. To overcome these drawbacks, this work offers a facile method to fabricate the eco-friendly and durable oil/water separation membrane fabrics by alkaline hydrolysis and silicon polyurethane coating. The X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy results demonstrate that silicon polyurethane membrane could be coated onto the surface of hydrolyzed polyester fabric and form a micro-/nano-scaled hierarchical structure. Based on this, the modified fabric could have a stable superhydrophobic property with a water contact angle higher than 150°, even after repeated washing and mechanical abrasion 800 times, as well as chemical corrosion. Moreover, the modified fabrics show excellent oil/water separation efficiency of up to 99% for various types of oil–water mixture. Therefore, this durable, eco-friendly and cost-efficient superhydrophobic fabric has great potential in large-scale oil/water separation. 展开更多
关键词 Superhydrophobic fabrics Silicon polyurethane membrane DURABILITY SEPARATION POLYMERS Waster water
下载PDF
Internal Polarization Field Induced Hydroxyl Spillover Effect for Industrial Water Splitting Electrolyzers
9
作者 Jingyi Xie Fuli Wang +3 位作者 Yanan Zhou Yiwen Dong Yongming Chai Bin Dong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期438-449,共12页
The formation of multiple oxygen intermediates supporting efficient oxygen evolution reaction(OER)are affinitive with hydroxyl adsorption.However,ability of the catalyst to capture hydroxyl and maintain the continuous... The formation of multiple oxygen intermediates supporting efficient oxygen evolution reaction(OER)are affinitive with hydroxyl adsorption.However,ability of the catalyst to capture hydroxyl and maintain the continuous supply at active sits remains a tremendous challenge.Herein,an affordable Ni2P/FeP2 heterostructure is presented to form the internal polarization field(IPF),arising hydroxyl spillover(HOSo)during OER.Facilitated by IPF,the oriented HOSo from FeP2 to Ni2P can activate the Ni site with a new hydroxyl transmission channel and build the optimized reaction path of oxygen intermediates for lower adsorption energy,boosting the OER activity(242 mV vs.RHE at 100 mA cm-2)for least 100 h.More interestingly,for the anion exchange membrane water electrolyzer(AEMWE)with low concentration electrolyte,the advantage of HOSo effect is significantly amplified,delivering 1 A cm^(-2)at a low cell voltage of 1.88 V with excellent stability for over 50 h. 展开更多
关键词 Hydroxyl spillover effect Internal polarization field HETEROSTRUCTURE Oxygen reduction reaction Anion exchange membrane water electrolysis
下载PDF
PEM电解水制氢膜电极涂布工艺
10
作者 路文龙 韩坤坤 吴亮 《电源技术》 CAS 北大核心 2024年第2期211-217,共7页
质子交换膜(PEM)电解水制氢用膜电极卷对卷连续涂布工艺是目前研究的热点,同时也是限制膜电极量产化及国产化的制约因素之一。基于国产膜电极的批量化制备,分析了目前卷对卷连续涂布工艺的系统,介绍了涂布设备的构成及基本原理。在涂布... 质子交换膜(PEM)电解水制氢用膜电极卷对卷连续涂布工艺是目前研究的热点,同时也是限制膜电极量产化及国产化的制约因素之一。基于国产膜电极的批量化制备,分析了目前卷对卷连续涂布工艺的系统,介绍了涂布设备的构成及基本原理。在涂布过程中,催化剂浆料是影响产品性能及均匀性的重要因素;介绍了涂布工艺中的缺陷问题及优化方向。从设备装置,浆料配制工艺,工艺参数调试等方面综合解决目前涂布工艺中的产品缺陷问题,减少批量化生产工艺中的质量缺陷和性能缺陷,提高生产效率的同时降低电解水制氢的成本。 展开更多
关键词 质子交换膜电解水制氢 膜电极 涂布 催化剂浆料
下载PDF
PEM电解制氢技术问题及现状分析
11
作者 张显峰 唐乾 +2 位作者 刘伟 徐凤麒 王廷勇 《山东化工》 CAS 2024年第4期105-109,共5页
对国内外质子交换膜(Proton exchange membrane,简称PEM)电解制氢市场、技术进行了全面的分析,同时对PEM电解槽、制氢系统及可再生能源制氢存在的技术问题进行了探讨,提出了解决措施。分析表明,国外PEM制氢系统无论市场还是技术都处于... 对国内外质子交换膜(Proton exchange membrane,简称PEM)电解制氢市场、技术进行了全面的分析,同时对PEM电解槽、制氢系统及可再生能源制氢存在的技术问题进行了探讨,提出了解决措施。分析表明,国外PEM制氢系统无论市场还是技术都处于领先地位,其中电解槽电流密度和寿命,以及制氢系统腐蚀防护技术、系统内部纯水净化控制技术、系统噪音控制技术和安全控制技术都优于国内产品。膜电极的氢气渗透率、催化剂的负载种类和形式,气体扩散层的材料替代、加工制造技术和耐久性的改性优化,以及双极板的厚度、板材替代、制造工艺和表面涂层沉积工艺等是PEM电解槽主要研究方向和突破点。如何解决可再生能源电源质量波动对电解制氢系统的不利影响是未来的发展方向。 展开更多
关键词 pem制氢市场 pem电解槽 膜电极 pem制氢系统 可再生能源制氢
下载PDF
电流密度和运行温度对PEM水电解制氢能耗的影响
12
作者 朱宁伟 赵京辉 +3 位作者 谢海洋 宋学平 吉力强 郭辉进 《新能源进展》 CSCD 北大核心 2024年第1期35-39,共5页
质子交换膜(PEM)水电解制氢技术是采用绿电制取绿氢的重要方法,对我国实现双碳目标具有重要意义。优化运行参数是降低PEM水电解制氢系统能耗的一种重要途径。建立一套工业级PEM水电解制氢实验装置,通过现场实验,考察电流密度和运行温度... 质子交换膜(PEM)水电解制氢技术是采用绿电制取绿氢的重要方法,对我国实现双碳目标具有重要意义。优化运行参数是降低PEM水电解制氢系统能耗的一种重要途径。建立一套工业级PEM水电解制氢实验装置,通过现场实验,考察电流密度和运行温度对PEM水电解制氢系统能耗的影响,探讨优化运行参数降低运行能耗的方法。结果表明,当电流密度为0.2~1.4 A/cm^(2)、运行温度为20~60℃,PEM水电解制氢系统单位能耗分别与电流密度、运行温度负相关。提高运行温度会引起电解电压下降,系统单位直流能耗显著降低。提高电流密度会造成系统单位直流能耗升高,而单位交流能耗降低。 展开更多
关键词 质子交换膜 水电解 电流密度 运行温度 能耗
下载PDF
The effect of coupling coagulation and flocculation with membrane filtration in water treatment:A review 被引量:21
13
作者 TorOve Leiknes 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第1期8-12,共5页
Water supply and sanitation demands are foreseen to face enormous challenges over the coming decades to meet the fast growing needs in a global perspective. Significant growth in the industry is predicted and membrane... Water supply and sanitation demands are foreseen to face enormous challenges over the coming decades to meet the fast growing needs in a global perspective. Significant growth in the industry is predicted and membrane separation technologies have been identified as one of the possible solutions to meet future demands. Application and implementation of membrane technology is expected both in production of potable water as well as in treatment of wastewater. In potable water production membranes are substituting conventional separation technologies due to the superior performance, potential for less chemical use and sludge production, as well as the potential to fulfill hygienic barrier requirements. Membrane bio-reactor (MBR) technology is probably the membrane process which has had most success and has the best prospects for the future in wastewater treatment. Trends and developments indicate that this technology is becoming accepted and is rapidly becoming the best available technology for many wastewater treatment applications. A major drawback of MBR systems is membrane fouling. Studies have shown that fouling mitigation in MBR systems can potentially be done by coupling coagulation and flocculation to the process. 展开更多
关键词 coagulation and flocculation membrane filtration potable water WASTEwater
下载PDF
MASS TRANSFER IN MEMBRANE ABSORPTIONDESORPTION OF AMMONIA FROM AMMONIA WATER 被引量:6
14
作者 王世昌 徐世昌 秦英杰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1993年第3期37-47,共11页
Hydrophobic membrane can provide fast mass transfer for absorption-desorption of gasesform liquid to absorbent.The removal of ammonia from ammonia water and absorption with dilutesulphuric acid was studied in a pilot ... Hydrophobic membrane can provide fast mass transfer for absorption-desorption of gasesform liquid to absorbent.The removal of ammonia from ammonia water and absorption with dilutesulphuric acid was studied in a pilot plant with polypropylene hollow fiber column,The removalrate and influences of operation temperature,flow rate and concentration on mass transferperformances were discussed mathematically.Experimental results and computer calculation show thatthe ammonia removal rate is not affected by the feed concentration for a given system.Both partialand overall mass transfer coefficients vary along the axis of the fiber,and the mass transfer for themembrane process is controlled by membrane resistance. 展开更多
关键词 mass transfer membrane absorption-desorption HOLLOW fiber AMMONIA water AMMONIA re-moval rate
下载PDF
Review on structural control and modification of graphene oxide-based membranes in water treatment: From separation performance to robust operation 被引量:4
15
作者 Ning Zhang Wenxu Qi +5 位作者 Lili Huang En Jiang Junjiang Bao Xiaopeng Zhang Baigang An Gaohong He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第6期1348-1360,共13页
Membrane separation has become an important technology to deal with the global water crisis. The polymerbased membrane technology is currently in the forefront of water purification and desalination but is plagued wit... Membrane separation has become an important technology to deal with the global water crisis. The polymerbased membrane technology is currently in the forefront of water purification and desalination but is plagued with some bottlenecks. Laminated graphene oxide(GO) membranes exhibit excellent advantages in water purification and desalination due to the single atomic layer structure, hydrophilic property, rich oxygen-containing groups for modification, mechanical and chemical robust, anti-fouling properties, facile and large-scale production, etc. Thus the GO-based membrane technology is believed to offer huge opportunities for efficient and practical water treatment. This review systematically summarizes the current progress on the water flux and selectivity intensification, stability improvement, anti-fouling and anti-biofouling ability enhancement by structural control and modification. To improve the performance of the laminated GO membrane, interlayer spacing tunability and surface modification are mainly used to enhance its water flux and selectivity. It is found that the stability and biofouling also block the service life of the GO membrane. The crosslinking method is found to effectively solve the stability of GO membrane in aqueous environment. Introducing nanoparticles is a widely used method to improve the membrane biofouling ability. Overall, we believe that this review could provide benefit to researchers in the area of GO-based membrane technology for water treatment. 展开更多
关键词 membranes Graphene OXIDE water FLUX SELECTIVITY Stability FOULING
下载PDF
Mechanism of combination membrane and electro-winning process on treatment and remediation of Cu^(2+) polluted water body 被引量:3
16
作者 ZHANG Linnan WU Yanjun +2 位作者 QU Xiaoyan LI Zhenshan NI Jinren 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第6期764-769,共6页
Mechanism of treatment and remediation of synthetic Cu^2+ polluted water body by membrane and electro-winning combination process was investigated.The influences of electrolysis voltage,pH,and electrolysis time on th... Mechanism of treatment and remediation of synthetic Cu^2+ polluted water body by membrane and electro-winning combination process was investigated.The influences of electrolysis voltage,pH,and electrolysis time on the metal recovery effciencies were studied.Relationship between trans-membrane pressure drop(△P),additions ratio,initial Cu^2+ concentration on operating effciency,stability of membrane and the possibility of water reuse were also investigated.The morphology of membrane and electrodes were observed using scanning electron microscopy(SEM),the composition of surface deposits was ascertained using combined energy dispersive X-ray spectroscopy(EDX) and atomic absorption spectrophotometer.The results showed that using low pressure reverse osmosis(LPRO),Cu^2+ concentration could increase from 20 to 100 mg/L or even higher in concentrated solutions and permeate water conductivity could be less than 20 μS/cm.The addition of sodium dodecy/sulfate sodium dodecyl sulfate improved Cu^2+ removal effciency,while EDTA had little side influence.In electro-reduction process,using plante electrode cell,Cu^2+ concentration could be further reduced to 5 mg/L,and the average current effciency ranged from 9% to 40%.Using 3D electrolysis treatment,Cu^2+ concentration could be reduced to 0.5 mg/L with a current effciency range 60%-70%. 展开更多
关键词 heavy metal water body membranes electro-winning REMEDIATION
下载PDF
Emerging R&D on membranes and systems for water reuse and desalination 被引量:2
17
作者 Tai-Shung Chung Dieling Zhao +4 位作者 Jie Gao Kangjia Lu Chunfeng Wan Martin Weber Christian Maletzko 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第7期1578-1585,共8页
Sustainable production of clean water is a global challenge.While we firmly believe that membrane technologies are one of the most promising solutions to tackle the global water challenges,one must reduce their energy... Sustainable production of clean water is a global challenge.While we firmly believe that membrane technologies are one of the most promising solutions to tackle the global water challenges,one must reduce their energy consumption and fouling propensity for broad sustainable applications.In addition,different membranes face various challenges in their specific applications during long-term operations.In this short review,we will summarize the recent progresses in emerging membrane technologies and system integration to advance and sustain water reuse and desalination with discussion on their challenges and perspectives. 展开更多
关键词 membrane technology water REUSE DESALINATION Hybrid system NANOMATERIALS
下载PDF
Water Distribution and Removal along the Flow Channel in Proton Exchange Membrane Fuel Cells 被引量:2
18
作者 丁刚强 TANG Heqing +4 位作者 LUO Zhiping 涂正凯 PEI Houchang LIU Zhichun LIU Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第2期243-248,共6页
Distribution expressions of total gas pressure and partial water vapor pressure along the channel direction were established based on lumped model by analyzing pressure loss in the channel and gas diffusion in the lay... Distribution expressions of total gas pressure and partial water vapor pressure along the channel direction were established based on lumped model by analyzing pressure loss in the channel and gas diffusion in the layer. The mechanism of droplet formation in the flow channel was also analyzed. Effects of the relative humidity, working temperature and stoichiometry on liquid water formation were discussed in detail. Moreover, the force equilibrium equation of the droplet in the flow channel was deduced, and the critical flow velocity for the water droplet removal was also addressed. The experimental results show that the threshold position of the liquid droplet is far from the inlet with the increase of temperature, and it decreases with the increase of the inlet total pressure. The critical flow velocity decreases with the increase of the radius and the working pressure. 展开更多
关键词 proton exchange membrane fuel cells pressure loss water distribution water removal
下载PDF
Studies on Feasibility of Reverse Osmosis (Membrane) Technology for Treatment of Tannery Wastewater 被引量:4
19
作者 Kuppusamy Ranganathan Shreedevi D. Kabadgi 《Journal of Environmental Protection》 2011年第1期37-46,共10页
Tanneries reusing wastewater by combination of conventional and advanced Reverse Osmosis (RO) treatment technologies were assessed for technical and economic viabilities. Conventional treatment methods such as neutral... Tanneries reusing wastewater by combination of conventional and advanced Reverse Osmosis (RO) treatment technologies were assessed for technical and economic viabilities. Conventional treatment methods such as neutralization, clari-flocculation and biological processes are followed to clean the effluents before feeding to RO membrane modules. The characteristics of untreated composite effluents such as pH, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), and total chromium were in the range of 4.00-4.60, 680-3600 mg/L, 1698-7546 mg/L, 980-1480 mg/L, 4200-14500 mg/L, and 26.4-190 mg/L, respectively. Inorganic ions like Ca2+, Na+, Cl– and SO42– were found more in the wastewaters. Conventional treatments significantly removed the organic pollutants however failed to remove dissolved inorganic salts. Membrane technology removed the salts as well as remaining organic pollutants and the product water is reused in the process. The studied tanneries (5 numbers) have achieved 93-98%, 92-99% and 91-96% removal of TDS, sodium and chloride, respectively. Seventy to eighty five percentage of wastewater was recovered and recycled in the industrial processes. The rejects are subject to either solar evaporation system or Multiple Effect Evaporation (MEE) technology. The resulting salts are collected in polythene bags and disposed into scientifically managed secured land fill (SLF) site. The cost of wastewater treatment for operation and maintenances of RO including the pre-treatments (conventional methods) is INR 100-110 m-3. 展开更多
关键词 REVERSE Osmosis (RO) membrane TECHNOLOGY RECYCLING TANNERY Waste water
下载PDF
An effective oxygen electrode based on Ir0.6Sn0.4O2 for PEM water electrolyzers 被引量:1
20
作者 Guang Jiang Hongmei Yu +5 位作者 Jinkai Hao Jun Chi Zhixuan Fan Dewei Yao Bowen Qin Zhigang Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期23-28,共6页
An effective oxygen evolution electrode with Ir0.6Sn0.4O2 was designed for proton exchange membrane(PEM)water electrolyzers.The anode catalyst layer exhibits a jagged structure with smaller particles and pores,which p... An effective oxygen evolution electrode with Ir0.6Sn0.4O2 was designed for proton exchange membrane(PEM)water electrolyzers.The anode catalyst layer exhibits a jagged structure with smaller particles and pores,which provide more active sites and mass transportation channels.The prepared IrSn electrode showed a cell voltage of 1.96 V at 2.0 A cm^-2 with Ir loading as low as 0.294 mg cm^-2.Furthermore,Ir Sn electrode with different anode catalyst loadings was investigated.The IrS n electrode indicates higher mass current and more stable cell voltage than the commercial Ir Black electrode at low loading. 展开更多
关键词 pem water electrolyzer OER electrode Low lr loading
下载PDF
上一页 1 2 246 下一页 到第
使用帮助 返回顶部