期刊文献+
共找到1,254篇文章
< 1 2 63 >
每页显示 20 50 100
Zeolite powder addition to improve the performance of submerged gravitation-filtration membrane bioreactor 被引量:8
1
作者 HE Sheng-bing XUE Gang KONG Hai-nan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第2期242-247,共6页
In this study, the effect of zeolite powder addition on submerged membrane bioreactor (SMBR) on membrane permeability, and the removals for COD, NH3-N, TN were investigated. Through the parallel operation of control... In this study, the effect of zeolite powder addition on submerged membrane bioreactor (SMBR) on membrane permeability, and the removals for COD, NH3-N, TN were investigated. Through the parallel operation of control and test systems, it was found that the zeolite powder addition could alleviate the ultra-filtration membrane fouling and enhance the membrane permeability. On the basis of experimental investigations, a concept of "protection coating layer" was proposed to illustrate the phenomenon of UF membrane fouling. In addition, the removal for COD in test system was more stable, a little higher compared to the control system. Due to the combination of nitrification and ion exchange, a more excellent removal for NH3-N in test system was obtained regardless of influent NH3-N loading rate. It was also found that a mean 25% higher TN removal took place in the test system, and ion exchange and simultaneous nitrification and de-nitrification were analyzed to be main factors. During the stable operation period, the SOURs of test zeolite powder added sludge and control activated sludge were measured to be 75 mgO2/(gMLVSS, h) and 24 mgO2/(gMLVSS, h) respectively, it meant that the zeolite powder addition could enhance the microorganism activity significantly. 展开更多
关键词 submerged gravitation-filtration membrane bioreactor performance zeolite powder membrane fouling microorganism activity
下载PDF
Fabrication of SPES/Nano-TiO_2 Composite Ultrafiltration Membrane and Its Anti-fouling Mechanism 被引量:3
2
作者 罗明良 温庆志 +2 位作者 刘佳林 刘洪见 贾自龙 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第1期45-51,共7页
Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltration(UF)process.In this study,a sulfonated-polyethersulfone(SPES)/nano-TiO2 composite UF membrane with ... Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltration(UF)process.In this study,a sulfonated-polyethersulfone(SPES)/nano-TiO2 composite UF membrane with good anti-fouling performance was fabricated by phase inversion and self-assembly methods.The TiO2 nanoparticle self-assembly on the SPES membrane surface was confirmed by X-ray photoelectron spectroscopy (XPS)and FT-IR spectrometer.The morphology and hydrophilicity were characterized by scanning electron microscopy(SEM),atomic force microscopy(AFM)and contact angle goniometer,respectively.The anti-fouling mechanism of composite UF membrane was discussed through the analysis of the micro-structure and component of UF membrane surface.The results showed that the TiO2 content and the micro-structure of the composite UF membrane surface had great influence on the separation and anti-fouling performance. 展开更多
关键词 anti-fouling ultrafiltration membrane sulfonated-polyethersulfone TiO2 nanoparticle phase inversion SELF-ASSEMBLY
下载PDF
Porous polybenzimidazole membranes with positive charges enable an excellent anti-fouling ability for vanadium-methylene blue flow battery 被引量:2
3
作者 Dongju Chen Guangyu Liu +2 位作者 Jie Liu Changkun Zhang Zhizhang Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期247-254,共8页
A cost-effective, high-performance and highly stable membrane has always been in intensively needed in aqueous organic-based flow batteries. Here we present a porous polybenzimidazole(PBI) membrane with positive charg... A cost-effective, high-performance and highly stable membrane has always been in intensively needed in aqueous organic-based flow batteries. Here we present a porous polybenzimidazole(PBI) membrane with positive charges that endow the membrane with a high rejection and an excellent anti-fouling ability for target organic molecule and asymmetric structure that affords a high conductivity for vanadiummethylene blue flow battery(V-MB FB). The morphologies and thickness of separating layer in particular of the porous PBI can be well adjusted by simply altering the polymer concentration in the cast solution and further afford the membrane with a controllable property in terms of both ion selectivity and ion conductivity. As a result, a V-MB FB assembled with a porous PBI membrane delivers a coulombic efficiency(CE) of 99.45% and an energy efficiency(EE) of 86.10% at a current density of 40 mA cm^(-2), which is 12% higher than that afforded by a Nafion 212 membrane. Most importantly, the V-MB FB demonstrates a methylene blue(MB) utilization of 97.55% at a theoretical capacity of 32.16 Ah L^(-1)(based on the concentration of MB in the electrolyte) because of the high ion conductivity of the membrane, which favors reducing the cost of a battery. The results suggest that the designed porous PBI membranes exhibit a very promising prospect for methylene blue-vanadium flow battery. 展开更多
关键词 Electrochemical energy storage technology Vanadium-methylene blue flow battery Porous PBI membranes anti-fouling stability
下载PDF
Fabrication of magnetically responsive anti-fouling and easy-cleaning nanofiber membrane and its application for efficient oil-water emulsion separation 被引量:1
4
作者 Yajie Wang Zhiwei Guo +4 位作者 Yujie Yang Yanxiang Li Qingchun Guo Peilin Cui Wangliang Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第1期286-293,共8页
The magnetically responsive anti-fouling nanofiber membrane(MRANM)was fabricated for efficient oilwater emulsion separation,which could be cleaned using oscillating magnetic field.MRANM was prepared by grafting superp... The magnetically responsive anti-fouling nanofiber membrane(MRANM)was fabricated for efficient oilwater emulsion separation,which could be cleaned using oscillating magnetic field.MRANM was prepared by grafting superparamagnetic Fe_(3)O_(4) nanoparticles onto the surface of electrospun polyacrylonitrile nanofiber membrane(PANM).Compared with PANM,the water contact angle of MRANM decreased from 104°to 0°,indicating that the hydrophilicity of the membrane was significantly improved.For the emulsions of hexadecane,octane and rapeseed oil,the separation efficiency was 98.04%,96.59%and 92.67%,respectively.After the treatments in oscillating magnetic field,the separation efficiency kept above 95%after 8 times recycling,which indicated that the MRANM had good regenerability and reusability.The as-fabricated membrane with magnetic responsiveness facilitated an effective method for solving the membrane fouling problem during practical applications of separation high viscosity oil-water emulsion. 展开更多
关键词 SUPERPARAMAGNETIC Nanofiber membrane anti-fouling Oil-water emulsion REGENERATION
下载PDF
Zwitterionic monolayer grafted ceramic membrane with an antifouling performance for the efficient oil-water separation 被引量:1
5
作者 Tianyu Zhang Qian Wang +7 位作者 Wei Luan Xue Li Xianfu Chen Dong Ding Zhichao Shen Minghui Qiu Zhaoliang Cui Yiqun Fan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期227-235,共9页
Enormous demands on the separation of oil/water(O/W)emulsions in various industries,such as petrochemical,food and pharmaceutical industries,are looking for high performance and energy-efficient separation methods.Cer... Enormous demands on the separation of oil/water(O/W)emulsions in various industries,such as petrochemical,food and pharmaceutical industries,are looking for high performance and energy-efficient separation methods.Ceramic membranes have been used to deal with O/W emulsions,for its outstanding characteristics of easy-operation,high-flux,and long-term stability.However,membrane fouling is still a challenge in the industrial application of ceramic membranes.Herein,antifouling ceramic membranes were fabricated by grafting zwitterions on the membrane surface via an environment-friendly two-step grafting method,which improves the antifouling property and permeability.Successful grafting of such zwitterion on the ceramic surface was assessed by the combination of FTIR and XPS characterization.More importantly,the hydration can be formed by electrostatic interactions layer on the modified membrane,which was confirmed by TGA characterization.The antifouling performance of prepared zwitterionic ceramic membranes in the separation of O/W emulsions was systematically tested.The results suggested that zwitterion can significantly improve the flux of ceramic ultrafiltration membrane,and can also improve antifouling property dramatically by reducing the irreversible fouling in the separation of O/W emulsions.Therefore,zwitterionic ceramic membranes hold promising potentials as an antifouling,highly efficient and green method in the practical purification of the O/W emulsions. 展开更多
关键词 Ceramic membrane ZWITTERIONIC anti-fouling Hydration layer Oil/water emulsion
下载PDF
Performance Characteristics of an Irreversible Proton Exchange Membrane (PEM) Fuel Cell 被引量:1
6
作者 韦斐斐 黄跃武 《Journal of Donghua University(English Edition)》 EI CAS 2012年第5期393-398,共6页
A model of an irreversible proton exchange membrane (PEM) fuel cell working at steady-state was established, in which overpotenfials, internal currents, and crossover losses were taken into account. The expressions ... A model of an irreversible proton exchange membrane (PEM) fuel cell working at steady-state was established, in which overpotenfials, internal currents, and crossover losses were taken into account. The expressions of some key parameters of the fuel cell were derived from the point of electrochemistry and thermodynamics. Based on the irreversible model of the PEM fuel ceil, the influence of multi-irreversibilities on fuel cell performance were characterized and compared systematically. The general performance characteristic curves were generated. Moreover, when the electrical circuit was dosed with a load in it, the relations between the load resistance and power output density and efficiency were analyzed. The results provide a theoretical basis for both the operation and optimal design of real PEM fuel cells. 展开更多
关键词 proton exchange membrane PEM) fuel cell irreversible model performance characteristic leakage current load resistance
下载PDF
Atomic layer deposition of Al_2O_3 on porous polypropylene hollow fibers for enhanced membrane performances 被引量:1
7
作者 Xiaojuan Jia Zexian Low +2 位作者 He Chen Sen Xiong Yong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第4期695-700,共6页
Porous polypropylene hollow fiber(PPHF) membranes are widely used in liquid purification. However, the hydrophobicity of polypropylene(PP) has limited its applications in water treatment. Herein, we demonstrate that, ... Porous polypropylene hollow fiber(PPHF) membranes are widely used in liquid purification. However, the hydrophobicity of polypropylene(PP) has limited its applications in water treatment. Herein, we demonstrate that, for the first time, atomic layer deposition(ALD) is an effective strategy to conveniently upgrade the filtration performances of PPHF membranes. The chemical and morphological changes of the deposited PPHF membranes are characterized by spectral, compositional, microscopic characterizations and protein adsorption measurements. Al_2O_3 is distributed along the cross section of the PP hollow fibers, with decreasing concentration from the outer surface to the inner surface. The pore size of the outer surface can be easily turned by altering the ALD cycles. Interestingly, the hollow fibers become much more ductile after deposition as their elongation at break is increased more than six times after deposition with 100 cycles. The deposited membranes show simultaneously enhanced water permeance and retention after deposition with moderate ALD cycle numbers.For instance, after 50 ALD cycles a 17% increase in water permeance and one-fold increase in BSA rejection are observed. Moreover, the PP membranes exhibit improved fouling-resistance after ALD deposition. 展开更多
关键词 Polypropylene hollow fiber membranes Atomic layer deposition Alumina deposition anti-fouling Surface modification
下载PDF
Multilayer Membranes Based on Ceramic Materials——Sol-gel Synthesis,Characterization and Membrane Performance
8
作者 Sun Qianyao Xu Chunming 《Petroleum Science》 SCIE CAS CSCD 2007年第4期80-88,共9页
In nearly all chemical and petrochemical systems, separation of products generally accounts for more than 50% of the capital cost and the greatest part of the energy consumption. It is generally believed that membrane... In nearly all chemical and petrochemical systems, separation of products generally accounts for more than 50% of the capital cost and the greatest part of the energy consumption. It is generally believed that membrane systems can offer benefits in both reducing the energy consumption of the separation stages and lowering the capital expenditure (CAPEX). Microporous ceramic membranes have the potential to overcome the limitation in polymer membranes operation, which has been the subject of a large amount of research worldwide in the last two decades. And most of the research has aimed at the production of the asymmetric multilayered membrane based on amorphous oxides by sol-gel techniques. The paper is to give an overview of publications on ceramic membranes, including less common materials of titania, zirconia, which can be used for pervaporation in corrosive media. Commercially available microporous membranes based on these membrane materials and the membrane economics are also summarized. 展开更多
关键词 Multilayer membranes ceramic membranes sol-gel synthesis PERVAPORATION membrane performance
下载PDF
Experimental Study on the Electrochemical Performance of PEMFC under Different Assembly Forces
9
作者 Tongze Su Jiaran Liu +3 位作者 Yanqiang Wei Yihuizi Li Weichao Luo Jinzhu Tan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期265-274,共10页
Proton exchange membrane fuel cell(PEMFC)is of paramount significance to the development of clean energy.The components of PEMFC are assembled using many pairs of nuts and bolts.The assembly champing bolt torque is cr... Proton exchange membrane fuel cell(PEMFC)is of paramount significance to the development of clean energy.The components of PEMFC are assembled using many pairs of nuts and bolts.The assembly champing bolt torque is critical to the electrochemical performance and mechanical stability of PEMFC.In this paper,a PEMFC with the threechannel serpentine flow field was used and studied.The different assembly clamping bolt torques were applied to the PEMFC in three uniform assembly bolt torque and six non-uniform assembly bolt torque conditions,respectively.And then,the electrochemical performance experiments were performed to study the effect of the assembly bolt torque on the electrochemical performance.The test results show that the assembly bolt torque significantly affected the electrochemical performance of the PEMFC.In uniform assembly bolt torque conditions,the maximal power density increased initially as the assembly bolt torque increased,and then decreased on further increasing the assembly torque.It existed the optimum assembly torque which was found to be 3.0 N·m in this work.In non-uniform assembly clamping bolt torque conditions,the optimum electrochemical performance appeared in the condition where the assembly torque of each bolt was closer to be 3.0 N·m.This could be due to the change of the contact resistance between the gas diffusion layer and bipolar plate and mass transport resistance for the hydrogen and oxygen towards the catalyst layers.This work could optimize the assembly force conditions and provide useful information for the practical PEMFC stack assembly. 展开更多
关键词 Proton exchange membrane fuel cell Assembly force EXPERIMENT Electrochemical performance
下载PDF
Probing the Efficiency of PPMG-Based Composite Electrolytes for Applications of Proton Exchange Membrane Fuel Cell
10
作者 Shakeel Ahmed Faizah Altaf +6 位作者 Safyan Akram Khan Sumaira Manzoor Aziz Ahmad Muhammad Mansha Shahid Ali Ata-ur-Rehman Karl Jacob 《Transactions of Tianjin University》 EI CAS 2024年第3期262-283,共22页
PPMG-based composite electrolytes were fabricated via the solution method using the polyvinyl alcohol and polyvinylpyrrolidone blend reinforced with various contents of sulfonated inorganic filler.Sulfuric acid was em... PPMG-based composite electrolytes were fabricated via the solution method using the polyvinyl alcohol and polyvinylpyrrolidone blend reinforced with various contents of sulfonated inorganic filler.Sulfuric acid was employed as the sulfonating agent to functionalize the external surface of the inorganic filler,i.e.,graphene oxide.The proton conductivities of the newly prepared proton exchange membranes(PEMs)were increased by increasing the temperature and content of sulfonated graphene oxide(SGO),i.e.,ranging from 0.025 S/cm to 0.060 S/cm.The induction of the optimum level of SGO is determined to be an excellent route to enhance ionic conductivity.The single-cell performance test was conducted by sandwiching the newly prepared PEMs between an anode(0.2 mg/cm^(2) Pt/Ru)and a cathode(0.2 mg/cm^(2) Pt)to prepare membrane electrode assemblies,followed by hot pressing under a pressure of approximately 100 kg/cm^(2) at 60℃for 5–10 min.The highest power densities achieved with PPMG PEMs were 14.9 and 35.60 mW/cm^(2) at 25℃and 70℃,respectively,at ambient pressure with 100%relative humidity.Results showed that the newly prepared PEMs exhibit good electrochemical performance.The results indicated that the prepared composite membrane with 6 wt%filler can be used as an alternative membrane for applications of high-performance proton exchange membrane fuel cell. 展开更多
关键词 Proton exchange membrane fuel cell Sulfonated graphene oxide POLYVINYLPYRROLIDONE Solution casting membrane electrode assembly Fuel cell performance
下载PDF
Outstanding proton conductivity over wide temperature and humidity ranges and enhanced mechanical, thermal stabilities for surface-modified MIL-101-Cr-NH_(2)/Nafion composite membranes
11
作者 Xu Li Dongwei Zhang +7 位作者 Si Chen Yingzhao Geng Yong Liu Libing Qian Xi Chen Jingjing Li Pengfei Fang Chunqing He 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第11期1734-1746,共13页
High-performance proton exchange membranes are of great importance for fuel cells.Here,we have synthesized polycarboxylate plasticizer modified MIL-101-Cr-NH_(2)(PCP-MCN),a kind of hybrid metal-organic framework,which ... High-performance proton exchange membranes are of great importance for fuel cells.Here,we have synthesized polycarboxylate plasticizer modified MIL-101-Cr-NH_(2)(PCP-MCN),a kind of hybrid metal-organic framework,which exhibits a superior proton conductivity.PCP-MCN nanoparticles are used as additives to fabricate PCP-MCN/Nafion composite membranes.Microstructures and characteristics of PCP-MCN and these membranes have been extensively investigated.Significant enhancement in proton conduction for PCP-MCN around 55℃ is interestingly found due to the thermal motion of the PCP molecular chains.Robust mechanical properties and higher thermal decomposition temperature of the composite membranes are directly ascribed to strong intermolecular interactions between PCP-MCN and Nafion side chains,i.e.,the formation of substantial acid–base pairs(-SO_(3)^(-)…^(+)H–NH-),which further improves compatibility between additive and Nafion matrix.At the same humidity and temperature condition,the water uptake of composite membranes significantly increases due to the incorporation of porous additives with abundant functional groups and thus less crystallinity degree in comparison to pristine Nafion.Proton conductivity(σ)over wide ranges of humidities(30-100%RH at 25℃)and temperatures(30-98℃ at 100%RH)for prepared membranes is measured.The s in PCPMCN/Nafion composite membranes is remarkably enhanced,i.e.0.245 S/cm for PCP-MCN-3wt.%/Nafion is twice that of Nafion membrane at 98℃ and 100%RH,because of the establishment of well-interconnected proton transport ionic water channels and perhaps faster protonation–deprotonation processes.The composite membranes possess weak humidity-dependence of proton transport and higher water uptake due to excellent water retention ability of PCP-MCN.In particular,when 3 wt.%PCP-MCN was added to Nafion,the power density of a single-cell fabricated with this composite membrane reaches impressively 0.480,1.098 W/cm^(2) under 40%RH,100%RH at 60℃,respectively,guaranteeing it to be a promising proton exchange membrane. 展开更多
关键词 Nafion composite membrane Surface-modified MIL-101-Cr-NH_(2) Proton conductivity Single-cell performance
下载PDF
Ultrafiltration with in-line coagulation for the removal of natural humic acid and membrane fouling mechanism 被引量:10
12
作者 WANG Jin WANG Xiao-chang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第5期880-884,共5页
Experimental and theoretical analysis were made on the natural humic acid removal and the membrane fouling of ultrafiltration (UF) with in-line coagulation. The results showed dissolved organic carbon (DOC) and UV... Experimental and theoretical analysis were made on the natural humic acid removal and the membrane fouling of ultrafiltration (UF) with in-line coagulation. The results showed dissolved organic carbon (DOC) and UV254 removals by the UF with in-line coagulation at pH 7 were increased from 28% to 53% and 40% to 78% in comparison with direct UF treatment respectively. At the same time, the analysis of high performance liquid chromatography showed that UF with coagulation had significant improvement of removal of humic acid with molecular weights less than 6000 Da in particular. Compared to direct UF, the in-line coagulation UF also kept more constant permeate flux and very slight increase oftransmembrane pressure during a filtration circle. Two typical membrane fouling models were used by inducing two coefficients Kc and Kp corresponding to cake filtration model and pore narrowing model respectively. It was found that membrane fouling by pore-narrowing effect was effectively alleviated and that by cake-filtration was much decreased by in-line coagulation. Under the condition of coagulation prior to ultrafiltration at pH 7, the cake layer formed on the membrane surface became thicker, but the membrane filtration resistance was lower than that at pH 5 with the extension of operation time. 展开更多
关键词 natural humic acid ultrafiltration (UF) in-line coagulation high performance liquid chromatography (HPLC) membrane fouling
下载PDF
Effects of Freeze/Thaw Cycles and Gas Purging Method on Polymer Electrolyte Membrane Fuel Cells 被引量:7
13
作者 张生生 俞红梅 +3 位作者 朱红 侯俊波 衣宝廉 明平文 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第6期802-805,共4页
At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell (PEMFC) deteriorates markedly. The object of this work is to study the degradation mechanism of key components o... At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell (PEMFC) deteriorates markedly. The object of this work is to study the degradation mechanism of key components of PEMFC-membrane-electrode assembly (MEA) and seek feasible measures to avoid degradation. The effect of freeze/thaw cycles on the structure of MEA is investigated based on porosity and SEM measurement. The performance of a single cell was also tested before and after repetitious freeze/thaw cycles. The experimental results indicated that the performance of a PEMFC decreased along with the total operating time as well as the pore size distribution shifting and micro configuration changing. However, when the redundant water had been removed by gas purging, the performance of the PEMFC stack was almost resumed when it experienced again the same subzero temperature test. These results show that it is necessary to remove the water in PEMFCs to maintain stable performance under subzero temperature and gas purging is proved to be the effective operation. 展开更多
关键词 polymer ELECTROLYTE membrane fuel cell (PEMFC) freeze/thaw cycle ELECTRODE structure performance degradation GAS PURGING
下载PDF
Using cell membrane chromatography and HPLC-TOF/MS method for in vivo study of active components from roots of Aconitum carmichaeli 被引量:4
14
作者 Yan Cao Xiao- Fei Chen +3 位作者 Di- Ya Lu Xin Dong Guo-Qing Zhang Yi- Feng Chai 《Journal of Pharmaceutical Analysis》 SCIE CAS 2011年第2期125-134,共10页
An offline two-dimensional system combining a rat cardiac mascle cell membrane chromatography time-of-flight mass spectrometry (CMC-TOF/MS) with a high performance liquid chromatography time-of-flight mass spectrome... An offline two-dimensional system combining a rat cardiac mascle cell membrane chromatography time-of-flight mass spectrometry (CMC-TOF/MS) with a high performance liquid chromatography time-of-flight mass spectrometry (HPLC-TOF/MS) was established for investigating the parent components and metabolites in rat urine samples after administration of the roots of Aconitum carmichaeli. On the basis of the analysis of the first dimension, retention components of the urine sample were collected into 30 fractions (one fraction per minute). Then offline analysis of the second dimension was carried out. 34 compounds including 24 parent alkaloids and 10 potential metabolites were identified from the dosed rat urine, and then binding affinities of different compounds on cell membranes were compared and influences of some functional groups on activity were estimated with the semi-quantification and curve fitting method. As a result, binding affinities decreased along with the process of deacylation, debenzoylation and demethylation, which may be related to the alleviation of toxicity in the procedure of herb processing or metabolism. Moreover, some minor components in rat urine (Songorine, 14-benzoylneoline, Deoxyaconitine, etc. ) exerted relatively strong affinity on cell membranes are worth exploring. The results delivered by the system suggest that the CMC can be applied to in vivo study. 展开更多
关键词 cell membrane chromatography high performance liquid chromatography time-of-flight mass spectrometry two-dimensional system Aconitum carmichaeli
下载PDF
ZIF-67@Cellulose nanofiber hybrid membrane with controlled porosity for use as Li-ion battery separator 被引量:6
15
作者 Xiuxuan Sun Wangwang Xu +3 位作者 Xiuqiang Zhang Tingzhou Lei Sun-Young Lee Qinglin Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期170-180,I0006,共12页
Zeolitic imidazolate framework-67(ZIF-67) was synthesized on the surface of cellulose nanofibers(CNFs)in methonal to address the problems of unhomogeneous pore size and pore distribution of pure CNF membrane.A combina... Zeolitic imidazolate framework-67(ZIF-67) was synthesized on the surface of cellulose nanofibers(CNFs)in methonal to address the problems of unhomogeneous pore size and pore distribution of pure CNF membrane.A combination of Energy Dispersive X-Ray Spectroscopy(EDS),X-ray photoelectron spectroscopy(XPS) and X-ray powder diffraction(XRD) patterns were used to determine the successful synthesis of ZIF-67@CNFs.The size of the ZIF-67 particles and pore size of the ZIF-67@CNF membrane were50-200 nm and 150-350 nm, respectively.The prepared ZIF-67@CNF membrane exhibited excellent thermal stability,lower thermal shrinkage and high surface wettability.The discharge capacity retention of the Li-ion batteries(LIBs) made with ZIF-67@CNF,glass fiber(GF),CNF and commercial polymer membranes after 100 th cycle at 0.5 C rate were 88.41%,86.22%,83.27%,and 81.03%,respectively.LIBs with ZIF-67@CNF membrane exhibited a better rate capability than these with other membranes.No damage of porous structure or peel-off of ZIF-67 was observed in the SEM images of ZIF-67@CNF membrane after100 th cycle.The improved cycling performance,rate capability,and good electrochemical stability implied that ZIF-67@CNFs membrane can be considered as a good alternative LIB separator. 展开更多
关键词 Cellulose nanofibers ZIF-67 Li-ion battery membrane property Battery performance
下载PDF
Enrichment of Semi-Volatile Organic Acids from Aqueous Solutions by Multiple-Effect Membrane Distillation 被引量:5
16
作者 班睿 刘苗苗 +2 位作者 秦英杰 王焕 崔东胜 《Transactions of Tianjin University》 EI CAS 2012年第5期320-329,共10页
Multiple-effect membrane distillation (MEMD) process for enriching semi-volatile organic acids from their individual aqueous solutions was performed by using a hollow fiber-based air gap membrane distillation (AGMD... Multiple-effect membrane distillation (MEMD) process for enriching semi-volatile organic acids from their individual aqueous solutions was performed by using a hollow fiber-based air gap membrane distillation (AGMD) module with the function of internal heat recovery. Aqueous solutions of glyoxylic acid, glycolic acid, lactic acid, pyrnvic acid, malonic acid and glutaric acid were used as model feed. For a feed of 1% (mass fraction), each acid could be enriched for 8--20 times, which depended on the surface tension of the concentrate. The operation performance of MEMD process was characterized by permeation flux J, performance ratio PR and acid rejection rate R. The effects of cold feed-in temperature, heated feed-in temperature, feed-in volumetric flow rate and feed-in concen- tration on MEMD performance were experimentally evaluated. Maximum values of J, PR and R were 4.8 L/(h-m2), 9.84 and 99.93%, respectively. Moreover, MEMD process demonstrated a fairly good stability in a long-term experiment lasting for 30 d when aqueous solution of 4% (mass fraction) lactic acid was used as a feed. 展开更多
关键词 multiple-effect membrane distillation organic acid ENRICHMENT performance ratio STABILITY
下载PDF
Electro-viscoelastic behaviors of circular dielectric elastomer membrane actuator containing concentric rigid inclusion 被引量:1
17
作者 Zhengang WANG Tianhu HE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第4期547-560,共14页
The time-dependent electro-viscoelastic performance of a circular dielectric elastomer(DE) membrane actuator containing an inclusion is investigated in the context of the nonlinear theory for viscoelastic dielectrics.... The time-dependent electro-viscoelastic performance of a circular dielectric elastomer(DE) membrane actuator containing an inclusion is investigated in the context of the nonlinear theory for viscoelastic dielectrics. The membrane, a key part of the actuator, is centrally attached to a rigid inclusion of the radius a, and then connected to a fixed rigid ring of the radius b. When subject to a pressure and a voltage, the membrane inflates into an out-of-plane shape and undergoes an inhomogeneous large deformation. The governing equations for the large deformation are derived by means of non-equilibrium thermodynamics, and viscoelasticity of the membrane is characterized by a rheological spring-dashpot model. In the simulation, effects of the pressure, the voltage, and design parameters on the electromechanical viscoelastic behaviors of the membrane are investigated. Evolutions of the considered variables and profiles of the deformed membrane are obtained numerically and illustrated graphically. The results show that electromechanical loadings and design parameters significantly influence the electro-viscoelastic behaviors of the membrane. The design parameters can be tailored to improve the performance of the membrane. The approach may provide guidelines in designing and optimizing such DE devices. 展开更多
关键词 dielectric elastomer(DE) membrane soft active material ACTUATOR timedependent behavior electro-viscoelastic performance
下载PDF
Pilot study on treatment of low turbidity and low temperature water by coagulation-immersed membrane process 被引量:1
18
作者 康华 何文杰 +1 位作者 韩宏大 李辰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第2期37-42,共6页
The objective of this paper was to investigate the practicability of coagulation-immersed membrane process during low-temperature period through the study of steady operation,chemical cleaning methods,water quality an... The objective of this paper was to investigate the practicability of coagulation-immersed membrane process during low-temperature period through the study of steady operation,chemical cleaning methods,water quality and agent consumption.Experimental results showed that:membrane performance decreases with the reduction of temperature,but low temperature has little effect on stable operation of immersed membrane when coagulation as pretreatment.EFM with 1200 mg/L sodium hypochlorite after every 48 filtration cycles was made for reducing membrane fouling efficiently,and the method,with 1.5% sodium hydroxide and 3500 mg/L sodium hypochlorite for 10 h and then 2% hydrochloric acid for 4 h,is an appropriate cleaning method under low temperature.Compared with convention treatment process,immersed membrane process not only has same agent consumption,but also permeated water quality is more superior such as fine removal effect on turbidity with average 0.10 NTU.Therefore,coagulation-immersed membrane process is more appropriate for increasing water quality demand and the treatment of low turbidity and low temperature water. 展开更多
关键词 low temperature coagulation-immersed membrane process filter performance chemical cleaning water quality
下载PDF
Layered power scheduling optimization of PV hydrogen production system considering performance attenuation of PEMEL 被引量:2
19
作者 Yanhui Xu Haowei Chen 《Global Energy Interconnection》 EI CSCD 2023年第6期714-725,共12页
To analyze the additional cost caused by the performance attenuation of a proton exchange membrane electrolyzer(PEMEL)under the fluctuating input of renewable energy,this study proposes an optimization method for powe... To analyze the additional cost caused by the performance attenuation of a proton exchange membrane electrolyzer(PEMEL)under the fluctuating input of renewable energy,this study proposes an optimization method for power scheduling in hydrogen production systems under the scenario of photovoltaic(PV)electrolysis of water.First,voltage and performance attenuation models of the PEMEL are proposed,and the degradation cost of the electrolyzer under a fluctuating input is considered.Then,the calculation of the investment and operating costs of the hydrogen production system for a typical day is based on the life cycle cost.Finally,a layered power scheduling optimization method is proposed to reasonably distribute the power of the electrolyzer and energy storage system in a hydrogen production system.In the up-layer optimization,the PV power absorbed by the hydrogen production system was optimized using MALTAB+Gurobi.In low-layer optimization,the power allocation between the PEMEL and battery energy storage system(BESS)is optimized using a non-dominated sorting genetic algorithm(NSGA-Ⅱ)combined with the firefly algorithm(FA).A better optimization result,characterized by lower degradation and total costs,was obtained using the method proposed in this study.The improved algorithm can search for a better population and obtain optimization results in fewer iterations.As a calculation example,data from a PV power station in northwest China were used for optimization,and the effectiveness and rationality of the proposed optimization method were verified. 展开更多
关键词 PV electrolysis of water Proton exchange membrane electrolyzer performance attenuation Degradation cost Power scheduling optimization
下载PDF
Operational Model for Evaluating the Permeation of Mixed Gas Through Poly(dimethylsiloxane) Membrane 被引量:1
20
作者 武法文 李磊 +2 位作者 徐志红 谭淑娟 张志炳 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第5期700-707,共8页
An operational model is developed to evaluate and predict the permeation performance of mixed gas through poly(dimethylsiloxane) (PDMS) membranes by combining the ideal gas permeation model with the ex-perimental anal... An operational model is developed to evaluate and predict the permeation performance of mixed gas through poly(dimethylsiloxane) (PDMS) membranes by combining the ideal gas permeation model with the ex-perimental analysis of the mixed gas transport character. This model is tested using the binary and ternary mixed gas with various compositions through the PDMS membranes, and the predicted data of the permeation flux and the compositions of the permeated gas are in good agreement with the experimental ones, which indicates that the op-erational model is applicable for the evaluation of the permeation performance of mixed gas through PDMS mem-branes. 展开更多
关键词 operational model poly (dimethylsiloxane) membrane mixed gas permeation performance
下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部