The P2X3 receptor plays a vital role in sensory processing and transmission. The assembly and trafficking of the P2X3 receptor are important for its function in primary sensory neurons. As an important inflammation me...The P2X3 receptor plays a vital role in sensory processing and transmission. The assembly and trafficking of the P2X3 receptor are important for its function in primary sensory neurons. As an important inflammation mediator, ATP is released from different cell types around primary sensory neurons, especially under pathological pain conditions. Here, we showthat α, β-MeATP dramatically promoted membrane delivery of the P2X3 receptor both in HEK293T celts expressing recombinant P2X3 receptor and in rat primary sensory neurons. α, β-MeATP induced P2X3 receptor-mediated Ca^2+ influx, which further activated Ca^2+/calmodulin-dependent protein kinase Ilec (CaMKIIα). The N terminus of the P2X3 receptor was responsible for CaMKIleα binding, whereas Thr38s in the C terminus was phosphorylated by CaMKIIα. Thr^388 phosphorylation increased P2X3 receptor binding to caveoUn-1. CaveoUn-1 knockdown abrogated the α, β-MeATP-induced membrane insertion of the P2X3 receptor. Moreover,α, β-MeATP drove the CaMKIlec-mediated membrane coinsertion of the P2X2 receptor with the P2X3 receptor. The increased P2X3 receptors on the cell membrane that are due to Thr388 phosphorytation facilitated P2X3 receptor-mediated signal transduction. Together, our data indicate that CaMKIIoL and caveoUn-1 cooperate to drive Ugand-induced membrane delivery of the P2X3 receptor and may provide a mechanism of P2X3 receptor sensitization in pain development.展开更多
文摘The P2X3 receptor plays a vital role in sensory processing and transmission. The assembly and trafficking of the P2X3 receptor are important for its function in primary sensory neurons. As an important inflammation mediator, ATP is released from different cell types around primary sensory neurons, especially under pathological pain conditions. Here, we showthat α, β-MeATP dramatically promoted membrane delivery of the P2X3 receptor both in HEK293T celts expressing recombinant P2X3 receptor and in rat primary sensory neurons. α, β-MeATP induced P2X3 receptor-mediated Ca^2+ influx, which further activated Ca^2+/calmodulin-dependent protein kinase Ilec (CaMKIIα). The N terminus of the P2X3 receptor was responsible for CaMKIleα binding, whereas Thr38s in the C terminus was phosphorylated by CaMKIIα. Thr^388 phosphorylation increased P2X3 receptor binding to caveoUn-1. CaveoUn-1 knockdown abrogated the α, β-MeATP-induced membrane insertion of the P2X3 receptor. Moreover,α, β-MeATP drove the CaMKIlec-mediated membrane coinsertion of the P2X2 receptor with the P2X3 receptor. The increased P2X3 receptors on the cell membrane that are due to Thr388 phosphorytation facilitated P2X3 receptor-mediated signal transduction. Together, our data indicate that CaMKIIoL and caveoUn-1 cooperate to drive Ugand-induced membrane delivery of the P2X3 receptor and may provide a mechanism of P2X3 receptor sensitization in pain development.