期刊文献+
共找到87篇文章
< 1 2 5 >
每页显示 20 50 100
A Matthew MXene(Ti_(3)C_(2)T_(x))Lamellar Membrane as a Potassium-Sieving Amplifier
1
作者 Zong Lu Haoyu Wu +1 位作者 Yanying Wei Haihui Wang 《Engineering》 SCIE EI CAS CSCD 2024年第11期213-222,共10页
Transport channels with ultrahigh K^(+)selectivity over other ions play a crucial role for living beings,but constructing ionic channels with promising K^(+)selectivity and permeability remains a challenge.Here,an asy... Transport channels with ultrahigh K^(+)selectivity over other ions play a crucial role for living beings,but constructing ionic channels with promising K^(+)selectivity and permeability remains a challenge.Here,an asymmetric bilayer membrane based on MXene(Ti 3C2Tx)lamellar channels consisting of a recognition layer(RL)on top of an enhancement layer(EL)exhibits an amazing Matthew effect:amplification of the preferred transport of K^(+),resulting in an excellent K^(+)-separation performance.The K^(+)ion is selected by the 1-aza-18-crown-6 ether-modified RL,owing to preferential affinity energy,and then rapidly trans-ported as a hydrated ion through the EL,based on the confinement effect.Other undesired ions such as Na^(+)are hindered from entering the RL by the preferred K^(+)occupation of the crown ether.The MXene(Ti_(3)C_(2)T_(x))-based Matthew membrane presents high K^(+)-permeation rates of 0.1-0.2 mol∙m2∙h1,with a significant K^(+)/Na^(+)selectivity of 5-9.The molecular separation mechanism of the Matthew membrane is investigated deeply to explore the nature of the Matthew amplification effect on K^(+)sieving,where the precise matching of the RL and EL within the membrane governs the fast K^(+)permeation with good selectivity.The asymmetric structure of our Matthew membrane is the key to understanding the biolog-ical function of ion channels for precise and fast ion transport,which will guide us in the creation of arti-ficial ion channels or membranes. 展开更多
关键词 MXene(Ti_(3)C_(2)T_(x))membrane membrane separation Ion sieving K^(+)selectivity
下载PDF
Hydrogen Permeation Characteristics of Pd-CuMembrane in Plasma Membrane Reactor
2
作者 Muhd Hadi Iskandar Abd Razak Motoki Tsuda +1 位作者 YukioHayakawa Shinji Kambara 《Energy Engineering》 EI 2024年第2期259-272,共14页
Hydrogen is an alternative energy source that has the potential to replace fossil fuels.One of the hydrogen applications is as a material for Polymer Electrolyte Membrane Fuel Cells(PEMFC)in fuel cell vehicles.High-pu... Hydrogen is an alternative energy source that has the potential to replace fossil fuels.One of the hydrogen applications is as a material for Polymer Electrolyte Membrane Fuel Cells(PEMFC)in fuel cell vehicles.High-purity hydrogen can be obtained using a hydrogen separation membrane to prevent unwanted contaminants from potentially harming the PEMFC components.In this study,we fabricated a plasma membrane reactor and investigated the permeation performance of a hydrogen separation membrane in a plasma membrane reactor utilizing atmospheric pressure plasma.The result showed the hydrogen permeation rate increasing with time as reactor temperature is increased through joule heating.By decreasing the gap length of the reactor from 2 to 1 mm,the hydrogen permeation rate increases by up to 40%.The hydrogen permeation rate increases by 30%when pressure is applied to the plasma membrane reactor by up to 100 kPa. 展开更多
关键词 HYDROGEN ENERGY hydrogen separation membrane atmospheric pressure plasma
下载PDF
First membrane unit for separating CO_2 from natural gas operational
3
《Bulletin of the Chinese Academy of Sciences》 2007年第1期57-57,共1页
After a more-than-two-week trial operation, a new membrane unit based on the technology developed by researchers from the CAS Dalian Institute of
关键词 CO First membrane unit for separating CO2 from natural gas operational
下载PDF
Fuzzy self-tuning PID control of the operation temperatures in a two-staged membrane separation process 被引量:8
4
作者 Lei Wang Wencai Du +1 位作者 Hai Wang Hong Wu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第4期409-414,共6页
A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As t... A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance. 展开更多
关键词 membrane separation hydrogen recovery operation temperature fuzzy self-tuning PID control
下载PDF
Hydrochloric acid recovery from rare earth chloride solutions by vacuum membrane distillation 被引量:7
5
作者 TANG Jianjun ZHOU Kanggen 《Rare Metals》 SCIE EI CAS CSCD 2006年第3期287-292,共6页
The possibility of the recovery of hydrochloric acid from rare earth (RE) chloride solutions was first experimentally studied by batch vacuum membrane distillation (VMD). The recovery by continuous VMD was also st... The possibility of the recovery of hydrochloric acid from rare earth (RE) chloride solutions was first experimentally studied by batch vacuum membrane distillation (VMD). The recovery by continuous VMD was also studied to devise methods that enabled the operation of VMD setup in a stable condition as well as to increase the membrane-operating life The results indicated that HCl separation with RE by VMD was possible, and the recovery ratio of 80% could be achieved by batch VMD. In continuous VMD, when the temperature of circular solutions, circular rate, and downstream pressure was 62-63℃, 5.4 cm/s, and 9.33 kPa, respectively, the HCl concentration in circular solutions and the processing capacity per membrane area were obtained. The mathematical results were in accordance with the experimental ones. 展开更多
关键词 membrane separation hydrochloric acid recovery vacuum membrane distillation rare earth mathematical stimulation
下载PDF
Radial Basis Function Neural Networks-Based Modeling of the Membrane Separation Process: Hydrogen Recovery from Refinery Gases 被引量:6
6
作者 Lei Wang Cheng Shao +1 位作者 Hai Wang Hong Wu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第3期230-234,共5页
Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an imp... Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an important role in carrying out advanced process control (APC). For the first time, a soft-sensor model for the membrane separation process has been established based on the radial basis function (RBF) neural networks. The main performance parameters, i.e, permeate hydrogen concentration, permeate gas flux, and residue hydrogen concentration, are estimated quantitatively by measuring the operating temperature, feed-side pressure, permeate-side pressure, residue-side pressure, feed-gas flux, and feed-hydrogen concentration excluding flow structure, membrane parameters, and other compositions. The predicted results can gain the desired effects. The effectiveness of this novel approach lays a foundation for integrating control technology and optimizing the operation of the gas membrane separation process. 展开更多
关键词 membrane separation hydrogen recovery soft sensor RBF neural networks REFINERY operation optimization
下载PDF
Design and synthesis of Al-MOF/PPSU mixed matrix membrane with pollution resistance 被引量:5
7
作者 Shujuan Xiao Xiaowen Huo +3 位作者 Shuxin Fan Kui Zhao Shouwu Yu Xiaoyao Tan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期110-120,共11页
To enhance the performance of the polyphenylene sulfone(PPSU) membrane,a novel mixed matrix membrane with hydrophilicity and antifouling properties was prepared.Using PPSU as the ba sic membrane material,polyvinyl pyr... To enhance the performance of the polyphenylene sulfone(PPSU) membrane,a novel mixed matrix membrane with hydrophilicity and antifouling properties was prepared.Using PPSU as the ba sic membrane material,polyvinyl pyrrolidone(PVP) as the porogen,N-Methyl pyrrolidone(NMP) as the solvent,and MOF-CAU-1(Al_(4)(OH)_(2)(OCH_(3))_4(H_2 N-BDC)_(3)·xH_(2) O) as the filler,PPSU/CAU-1 mixed matrix membrane(MMM) was prepared by an immersion precipitation and phase transformation technique.By changing the amount of MOF-CAU-1,the properties and performance of the MMM membrane were investigated in terms of hydrophilicity,pore morphology,surface roughness,and dye removal.The results show that the highest pure water flux of the mixed reached 47.9 L·m^(-2)·h^(-1), when the CAU-1 addition amount was 1.0 wt%, which was 23% higher than that of the pure PPSU membrane.Both the rejection rate and the antifouling performance of the MMM membrane also noticeably improved. 展开更多
关键词 Mixed matrix membranes ANTIFOULING Metal-organic frameworks membrane separation technology
下载PDF
Sprayed separation membranes: A systematic review and prospective opportunities 被引量:4
8
作者 Guangjin Zhao Wenjing Han +4 位作者 Liangliang Dong Hongwei Fan Zhou Qu Jiahui Gu Hong Meng 《Green Energy & Environment》 SCIE EI CSCD 2022年第6期1143-1160,共18页
Membrane separation technology has been taken up for use in diverse applications such as water treatment,pharmaceutical,petroleum,and energy-related industries.Compared with the design of membrane materials,the innova... Membrane separation technology has been taken up for use in diverse applications such as water treatment,pharmaceutical,petroleum,and energy-related industries.Compared with the design of membrane materials,the innovation of membrane preparation technique is more urgent for the development of membrane separation technology,because it not only affects physicochemical properties and separation performance of the fabricated membranes,but also determines their potential in industrialized application.Among the various membrane preparation methods,spray technique has recently gained increasing attention because of its low cost,rapidity,scalability,minimum of environmental burden,and viability for nearly unlimited range of materials.In this Review article,we summarized and discussed the recent developments in separation membranes using the spray technique,including the fundamentals,important features and applications.The present challenges and future considerations have been touched to provide inspired insights for developing the sprayed separation membranes. 展开更多
关键词 membrane separation technology membrane preparation technique Spray technique SCALABILITY Industrialized application
下载PDF
Research progress on the substrate for metal-organic framework(MOF) membrane growth for separation 被引量:2
9
作者 Wufeng Wu Xilu Hong +2 位作者 Jiang Fan Yanying Wei Haihui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期299-313,共15页
During the last decade, metal-organic frameworks(MOFs) have been applied in various fields due to their unique chemical and functional advantages. One of the widespread research hotspots is MOF-based membranes for sep... During the last decade, metal-organic frameworks(MOFs) have been applied in various fields due to their unique chemical and functional advantages. One of the widespread research hotspots is MOF-based membranes for separations, specifically continuous defect-free MOF membranes, which are usually grown on porous substrates. The substrate not only serves as the MOF layer support but also has a great influence on the membrane fabrication process and the final separation performance of the resultant membrane. In this review, we mainly introduce the progress focused on the substrates for MOF membranes fabrication. The substrate modifications and seeding methods aimed at synthesizing highquality MOF membranes are also summarized systematically. 展开更多
关键词 membrane separation MOF membrane Metal-organic frameworks SUPPORT Synthesis
下载PDF
Mathematic Model of Unsteady Penetration Mass Transfer in Randomly Packed Hollow Fiber Membrane Module 被引量:2
10
作者 张秀莉 张泽廷 +1 位作者 张卫东 郝欣 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期185-190,共6页
Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penet... Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penetration mass transfer theory. The cross section of module is subdivided into many small cells which contains only one hollow-fiber. The cross sectional area distribution of these cells is presented by the normal probability density distribution function. It has been obtained that there was a most serious non-ideal flow in shell side at moderate mean packing density, and the large amount of fluid flowed and transferred mass through a small number of large voids. Thus mass transfer process is dominated by the fluid through the larger void area. The mass transfer process in each cell is described by the unsteady penetration theory. The overall mass transfer coefficient equals to the probability addition of the mean mass transfer coefficient in each cell. The comparisons of the values calculated by the model established with the empirical correlations and the experimental data of this work have been done.The predicted overall mass transfer coefficients are in good agreement with experimental data. 展开更多
关键词 hollow fiber membrane module mass transfer membrane separation mathematic model
下载PDF
Membrane materials in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures—A review 被引量:10
11
作者 Hong-Xia Liu Naixin Wang +2 位作者 Cui Zhao Shulan Ji Jian-Rong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第1期1-16,共16页
The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promisi... The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promising in terms of its economical, energy-saving, and eco-friendly advantages. However, this technique has not been used in industry for separating aromatic/aliphatic mixtures yet. One of the main reasons is that the separation performance of existed pervaporation membranes is unsatisfactory. Membrane material is an important factor that affects the separation performance. This review provides an overview on the advances in studying membrane materials for the pervaporation separation of aromatic/aliphatic mixtures over the past decade. Explored pristine polymers and their hybrid materials(as hybrid membranes) are summarized to highlight their nature and separation performance. We anticipate that this review could provide some guidance in the development of new materials for the aromatic/aliphatic pervaporation separation. 展开更多
关键词 Aromatic/aliphatic hydrocarbon mixtures membrane materials Pervaporation separation
下载PDF
Remove volatile organic compounds(VOCs) with membrane separation techniques 被引量:1
12
作者 ZhanL WangHX 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第2期181-187,共7页
Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techni... Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse. 展开更多
关键词 volatile organic compounds(VOCs) membrane separation techniques REMOVE
下载PDF
The facile method developed for preparing polyvinylidene fluoride plasma separation membrane via macromolecular interaction 被引量:1
13
作者 Juanjuan Liu Xiaolong Lu +5 位作者 Guiming Shu Ke Li Shuyun Zheng Xiao Kong Tao Li Jun Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第9期140-149,共10页
The design of membrane pore is critical for membrane preparation. Polyvinylidene fluoride(PVDF) membrane exhibits outstanding properties in the water-treatment field. However, it is a huge challenge to prepare PVDF ma... The design of membrane pore is critical for membrane preparation. Polyvinylidene fluoride(PVDF) membrane exhibits outstanding properties in the water-treatment field. However, it is a huge challenge to prepare PVDF macro-pore plasma separation membrane by non-solvent induced phase separation(NIPS). Herein, a facile strategy is proposed to prepare PVDF macro-pore plasma separation membrane via macromolecular interaction. ATR-FTIR and ^(1)H NMR showed that the intermolecular interaction existed between polyethylene oxide(PEO) and polyvinylpyrrolidone(PVP). It could significantly affect the PVDF macro-pore membrane structure. The maximum pore of the PVDF membrane could be effectively adjusted from small-pore/medium-pore to macro-pore by changing the molecular weight of PEO. The PVDF macro-pore membrane was obtained successfully when PEO-200 k existed with PVP. It exhibited higher plasma separation properties than the currently used plasma separation membrane.Moreover, it had excellent hemocompatibility due to the similar plasma effect, hemolysis, prothrombin time, blood effect and complement C_(3a) effect with the current utilized plasma separation membrane,implying its great potential application. The proposed facile strategy in this work provides a new method to prepare PVDF macro-pore plasma separation membrane by NIPS. 展开更多
关键词 membranes Macro-pore plasma separation membrane Hemocompatibility PURIFICATION Biomedical engineering
下载PDF
Tuning sol size to optimize organosilica membranes for gas separation 被引量:5
14
作者 Huating Song Yibin Wei +2 位作者 Chenying Wang Shuaifei Zhao Hong Qi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第1期53-59,共7页
A series of organosilica sols are prepared by the polymeric sol–gel method using 1,2-bis(triethoxysilyl)ethane(BTESE)as the precursor.Particle size distributions of the BTESE-derived sols are systematically investiga... A series of organosilica sols are prepared by the polymeric sol–gel method using 1,2-bis(triethoxysilyl)ethane(BTESE)as the precursor.Particle size distributions of the BTESE-derived sols are systematically investigated by carefully adjusting the synthesis parameters(i.e.,water ratios,acid ratios and solvent ratios)in the sol process.In certain conditions,increasing the water ratio or the acid ratio tends to cause larger sol sizes and bimodal particle size distributions.However,higher solvent ratios lead to smaller sol sizes and unimodal particle size distributions.The organosilica membranes prepared from the optimized sols show excellent H_2 permeances(up to 4.2×10^(-7)mol·m^(-2)·s^(-1)·Pa^(-1))and gas permselectitivies(H_2/CO_2 is 9.5,H_2/N_2 is 50 and H_2/CH_4 is 68).This study offers significant insights into the relationship between the sol synthesis parameters,sol sizes and membrane performance. 展开更多
关键词 Organosilica membrane Sol-gelSol synthesis Gas separation
下载PDF
Development of CO2 Selective Poly(Ethylene Oxide)-Based Membranes: From Laboratory to Pilot Plant Scale 被引量:6
15
作者 Torsten Brinkmann Jelena Lilleparg +4 位作者 Heiko Notzke Jan Pohlmann Sergey Shishatskiy Jan Wind Thorsten Wolff 《Engineering》 SCIE EI 2017年第4期485-493,共9页
Membrane gas separation is one of the most promising technologies for the separation of carbon dioxide (CO2) from various gas streams. One application of this technology is the treatment of flue gases from combustio... Membrane gas separation is one of the most promising technologies for the separation of carbon dioxide (CO2) from various gas streams. One application of this technology is the treatment of flue gases from combustion processes for the purpose of carbon capture and storage. For this application, poly(ethylene oxide)-containing block copolymers such as Pebax or PolyActiveTM polymer are well suited. The thin-film composite membrane that is considered in this overview employs PolyActiveTM polymer as a selective layer material. The membrane shows excellent CO2 permeances of up to 4 m^3(STP).(m^2·h·bar)^-1 (1 bar = 105 Pa) at a carbon dioxide/nitrogen (CO2/N2) selectivity exceeding 55 at ambient temperature. The membrane can be manufactured reproducibly on a pilot scale and mounted into fiat-sheet membrane modules of different designs. The operating performance of these modules can be accurately predicted by specifically developed simulation tools, which employ single-gas permeation data as the only experimental input. The performance of membranes and modules was investigated in different pilot plant studies, in which flue gas and biogas were used as the feed gas streams. The investigated processes showed a stable separation performance, indicating the applicability of PolyActiveTM polymer as a membrane material for industrialscale gas processing. 展开更多
关键词 Gas permeation Thin-film composite membrane CO2 separation Carbon capture and storage Biogas processing membrane modules
下载PDF
Advances in high carbon dioxide separation performance of poly(ethylene oxide)-based membranes 被引量:1
16
作者 Samaneh Bandehali Abdolreza Moghadassi +3 位作者 Fahime Parvizian Sayed Mohsen Hosseini Takeshi Matsuura Ezatollah Joudaki 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期30-52,I0002,共24页
Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,t... Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,those membranes are not strong enough mechanically and highly crystalline,which hinders their broader applications for separation membranes.In this review discussions are made,as much in detail as possible,on the strategies to improve gas separation performance of PEO-based membranes.Some of techniques such as synthesis of graft copolymers that contain PEO,cross-linking of polymers and blending with long chains polymers contributed significantly to improvement of membrane.Incorporation of ionic liquids/nanoparticles has also been found effective.However,surface modification of nanoparticles has been done chemically or physically to enhance their compatibility with polymer matrix.As a result of all such efforts,an excellent performance,i.e.,CO2 permeability up to 200 Barrer,CO2/N2 selectivity up to 200 and CO2/CH4 selectivity up to 70,could be achieved.Another method is to introduce functional groups into PEO-based polymers which boosted CO2 permeability up to 200 Barrer with CO2/CH4 selectivity between 40 and 50.The CO2 permeability of PEO-based membranes increases,without much change in selectivity,when the length of ethylene oxide is increased. 展开更多
关键词 membrane gas separation Molecular design Poly(ethylene oxide) CO2/CH4 separation
下载PDF
Vehicle fuel from biogas with carbon membranes; a comparison between simulation predictions and actual field demonstration 被引量:1
17
作者 Shamim Haider Arne Lindbrathen +3 位作者 Jon Arvid Lie Petter Vattekar Carstensen ThorbjØrn Johannessen May-Britt Hagg 《Green Energy & Environment》 SCIE 2018年第3期266-276,共11页
The energy contents of biogas could be significantly enhanced by upgrading it to vehicle fuel quality.A pilot-scale separation plant based on carbon hollow fiber membranes for upgrading biogas to vehicle fuel quality ... The energy contents of biogas could be significantly enhanced by upgrading it to vehicle fuel quality.A pilot-scale separation plant based on carbon hollow fiber membranes for upgrading biogas to vehicle fuel quality was constructed and operated at the biogas plant,Gl?r IKS,Lillehammer Norway.Vehicle fuel quality according to Swedish legislation was successfully achieved in a single stage separation process.The raw biogas from anaerobic digestion of food waste contained 64±3 mol%CH_4,30–35 mol%CO_2 and less than one percent of N_2 and a minor amount of other impurities.The raw biogas was available at 1.03 bar with a maximum flow rate of 60 Nm^3h^(à1).Pre-treatment of biogas was performed to remove bulk H_2O and H_2S contents up to the required limits in the vehicle fuel before entering to membrane system.The membrane separation plant was designed to process 60 Nm^3h^(à1)of raw biogas at pressure up to 21 bar.The initial tests were,however,performed for the feed flow rate of 10 Nm^3h^(à1)at 21 bar.The successful operation of the pilot plant separation was continuously run for 192 h(8days).The CH_4 purity of 96%and maximum CH_4 recovery of 98%was reached in a short-term test of 5 h.The permeate stream contained over20 mol%CH_4which could be used for the heating application.Aspen Hysys~?was integrated with Chem Brane(in-house developed membrane model)to run the simulations for estimation of membrane area and energy requirement of the pilot plant.Cost estimation was performed based on simulation data and later compared with actual field results. 展开更多
关键词 Biogas upgrading Pilot-scale demonstration membrane separation Process simulations
下载PDF
In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation 被引量:1
18
作者 Yafei Su Xuke Zhang +2 位作者 Hui Li Donglai Peng Yatao Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期103-111,共9页
Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial abilit... Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial ability,but the dense accumulation on the membrane surface and the low permeate flux greatly hinder their application.Herein,we synthesized m HNTs(modified halloysite nanotubes)/ZIF-L nanocomposites on modified m HNTs by in situ growth method.Interestingly,due to the different size of m HNTs and ZIF-L,m HNTs were packed in ZIF-L nanosheets.The hollow m HNTs provided additional transport channels for water molecules,and the accumulation of the ZIF-L nanosheets was decreased after assembling m HNTs/ZIF-L nanocomposites into membrane by filtration.The prepared m HNTs/ZIF-L membrane presented high permeate flux(59.6 L·m^(-2)·h^(-1)),which is 2-4 times of the ZIF-L membranes(14.8 L·m^(-2)·h^(-1)).Moreover,m HNTs/ZIF-L membranes are intrinsically antimicrobial,which exhibit extremely high bacterial resistance.We provide a controllable strategy to improve 2D ZIF-L assembles,and develops novel membranes using 2D package structure as building units. 展开更多
关键词 Zeolitic imidazolate framework Halloysite nanotubes 2D nanocomposites In-situ growth Dye/salt separation membrane Antibacterial property
下载PDF
Enhanced gas separation performance of mixed matrix hollow fiber membranes containing post-functionalized S-MIL-53 被引量:6
19
作者 Haitao Zhu Xingming Jie +3 位作者 Lina Wang Guodong Kang Dandan Liu Yiming Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期781-790,共10页
Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and ... Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization. 展开更多
关键词 Post-functionalized S-MIL-53 Mixed matrix hollow fiber membranes CO2 permeance Plasticization Gas separation
下载PDF
Poly(amide-6-b-ethylene oxide)/[Bmim][Tf2N] blend membranes for carbon dioxide separation 被引量:3
20
作者 Yongtao Qiu Jizhong Ren +2 位作者 Dan Zhao Hui Li Maicun Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期122-130,共9页
Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting a... Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting and solvent evaporation method. The permeation properties of the blend membranes for CO2, N2,CH4 and H2 were studied, and the physical properties were characterized by differential scanning calorimeter(DSC) and X-ray diffraction(XRD). Results showed that [Bmim][Tf2N] was dispersed as amorphous phase in the blend membranes, which caused the decrease of Tg(PE) and crystallinity(PA). With the addition of [Bmim][Tf2N], the CO2 permeability increased and reached up to approximately 286 Barrer at 40 wt%[Bmim][Tf2N], which was nearly double that of pristine Pebax1657 membrane. The increase of CO2 permeability may be attributed to high intrinsic permeability of [Bmim][Tf2N], the increase of fractional free of volume(FFV) and plasticization effect. However, the CO2 permeability reduced firstly when the [Bmim][Tf2N]content was below 10 wt%, which may be due to that the small ions of [Bmim][Tf2N] in the gap of polymer chain inhibited the flexibility of polymer chain; the interaction between Pebax1657 and [Bmim][Tf2N]decreased the content of EO units available for CO2 transport and led to a more compact structure. For Pebax1657/[Bmim][Tf2N] blend membranes, the permeabilities of N2, H2 and CH4decreased with the increase of feed pressure due to the hydrostatic pressure effect, while CO2 permeability increased with the increase of feed pressure for that the CO2-induced plasticization effect was stronger than hydrostatic pressure effect. 展开更多
关键词 Poly(amide-6-b-ethylene oxide) Ionic liquid Carbon dioxide separation Blend membrane
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部